Gabriel Pigeon
Université de Sherbrooke
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriel Pigeon.
Evolutionary Applications | 2016
Gabriel Pigeon; Marco Festa-Bianchet; David W. Coltman; Fanie Pelletier
The potential for selective harvests to induce rapid evolutionary change is an important question for conservation and evolutionary biology, with numerous biological, social and economic implications. We analyze 39 years of phenotypic data on horn size in bighorn sheep (Ovis canadensis) subject to intense trophy hunting for 23 years, after which harvests nearly ceased. Our analyses revealed a significant decline in genetic value for horn length of rams, consistent with an evolutionary response to artificial selection on this trait. The probability that the observed change in male horn length was due solely to drift is 9.9%. Female horn length and male horn base, traits genetically correlated to the trait under selection, showed weak declining trends. There was no temporal trend in genetic value for female horn base circumference, a trait not directly targeted by selective hunting and not genetically correlated with male horn length. The decline in genetic value for male horn length stopped, but was not reversed, when hunting pressure was drastically reduced. Our analysis provides support for the contention that selective hunting led to a reduction in horn length through evolutionary change. It also confirms that after artificial selection stops, recovery through natural selection is slow.
Proceedings of the Royal Society B: Biological Sciences | 2017
Gabriel Pigeon; Marco Festa-Bianchet; Fanie Pelletier
Cohort effects can be a major source of heterogeneity and play an important role in population dynamics. Silver-spoon effects, when environmental quality at birth improves future performance regardless of the adult environment, can induce strong lagged responses on population growth. Alternatively, the external predictive adaptive response (PAR) hypothesis predicts that organisms will adjust their developmental trajectory and physiology during early life in anticipation of expected adult conditions but has rarely been assessed in wild species. We used over 40 years of detailed individual monitoring of bighorn ewes (Ovis canadensis) to quantify long-term cohort effects on survival and reproduction. We then tested both the silver-spoon and the PAR hypotheses. Cohort effects involved a strong interaction between birth and current environments: reproduction and survival were lowest for ewes that were born and lived at high population densities. This interaction, however, does not support the PAR hypothesis because individuals with matching high-density birth and adult environments had reduced fitness. Instead, individuals born at high density had overall lower lifetime fitness suggesting a silver-spoon effect. Early-life conditions can induce long-term changes in fitness components, and their effects on cohort fitness vary according to adult environment.
Nature Communications | 2017
Fanie Pelletier; Gabriel Pigeon; Patrick Bergeron; Francine M. Mayer; Mireille Boisvert; Denis Réale; Emmanuel Milot
Recent studies of the joint dynamics of ecological and evolutionary processes show that changes in genotype or phenotype distributions can affect population, community and ecosystem processes. Such eco-evolutionary dynamics are likely to occur in modern humans and may influence population dynamics. Here, we study contributions to population growth from detailed genealogical records of a contemporary human population. We show that evolutionary changes in women’s age at first reproduction can affect population growth: 15.9% of variation in individual contribution to population growth over 108 years is explained by mean age at first reproduction and at least one-third of this variation (6.1%) is attributed to the genetic basis of this trait, which showed an evolutionary response to selection during the period studied. Our study suggests that eco-evolutionary processes have modulated the growth of contemporary human populations.
Ecology | 2017
Gabriel Pigeon; Thomas H. G. Ezard; Marco Festa-Bianchet; David W. Coltman; Fanie Pelletier
Recent studies suggest that evolutionary changes can occur on a contemporary time scale. Hence, evolution can influence ecology and vice-versa. To understand the importance of eco-evolutionary dynamics in population dynamics, we must quantify the relative contribution of ecological and evolutionary changes to population growth and other ecological processes. To date, however, most eco-evolutionary dynamics studies have not partitioned the relative contribution of plastic and evolutionary changes in traits on population, community, and ecosystem processes. Here, we quantify the effects of heritable and non-heritable changes in body mass distribution on survival, recruitment, and population growth in wild bighorn sheep (Ovis canadensis) and compare their importance to the effects of changes in age structure, population density, and weather. We applied a combination of a pedigree-based quantitative genetics model, statistical analyses of demography, and a new statistical decomposition technique, the Geber method, to a long-term data set of bighorn sheep on Ram Mountain (Canada), monitored individually from 1975 to 2012. We show three main results: (1) The relative importance of heritable change in mass, non-heritable change in mass, age structure, density, and climate on population growth rate changed substantially over time. (2) An increase in body mass was accompanied by an increase in population growth through higher survival and recruitment rate. (3) Over the entire study period, changes in the body mass distribution of ewes, mostly through non-heritable changes, affected population growth to a similar extent as changes in age structure or in density. The importance of evolutionary changes was small compared to that of other drivers of changes in population growth but increased with time as evolutionary changes accumulated. Evolutionary changes became increasingly important for population growth as the length of the study period considered increased. Our results highlight the complex ways in which ecological and evolutionary changes can affect population dynamics and illustrate the large potential effect of trait changes on population processes.
Proceedings of the Royal Society B: Biological Sciences | 2018
Gabriel Pigeon; Fanie Pelletier
Cohort effects, when a common environment affects long-term performance, can have a major impact on population dynamics. Very few studies of wild animals have obtained the necessary data to study the mechanisms leading to cohort effects. We exploited 42 years of individual-based data on bighorn sheep to test for causal links between birth density, body mass, age at first reproduction (AFR), longevity and lifetime reproductive success (LRS) using path analysis. Specifically, we investigated whether the effect of early-life environment on lifetime fitness was the result of indirect effects through body mass or direct effects of early-life environment on fitness. Additionally, we evaluated whether the effects of early-life environment were dependant on the environment experienced during adulthood. Contrary to expectation, the effect on LRS mediated through body mass was weak compared to the effects found via a delay in AFR, reduced longevity and the direct effect of birth density. Birth density also had an important indirect effect on LRS through reduced longevity, but only when adult density was high. Our results show that the potential long-term consequences of a harsh early-life environment on fitness are likely to be underestimated if investigations are limited to body mass instead of fitness at several life stages, or if the interactions between past and present environment are ignored.
Nature Communications | 2018
Joanie Van de Walle; Gabriel Pigeon; Andreas Zedrosser; Jon E. Swenson; Fanie Pelletier
As an important extrinsic source of mortality, harvest should select for fast reproduction and accelerated life histories. However, if vulnerability to harvest depends upon female reproductive status, patterns of selectivity could diverge and favor alternative reproductive behaviors. Here, using more than 20 years of detailed data on survival and reproduction in a hunted large carnivore population, we show that protecting females with dependent young, a widespread hunting regulation, provides a survival benefit to females providing longer maternal care. This survival gain compensates for the females’ reduced reproductive output, especially at high hunting pressure, where the fitness benefit of prolonged periods of maternal care outweighs that of shorter maternal care. Our study shows that hunting regulation can indirectly promote slower life histories by modulating the fitness benefit of maternal care tactics. We provide empirical evidence that harvest regulation can induce artificial selection on female life history traits and affect demographic processes.Hunting and harvesting are generally expected to select for faster life histories in the exploited species. Here, the authors analyse data from a hunted population of brown bears in Sweden and show that regulations protecting females with dependent young lead hunting to favor prolonged maternal care.
Oikos | 2017
Mathieu Douhard; Gabriel Pigeon; Marco Festa-Bianchet; David W. Coltman; Simon Guillemette; Fanie Pelletier
Canadian Journal of Zoology | 2013
Gabriel Pigeon; Renaud Baeta; Marc Bélisle; Dany Garant; Fanie Pelletier
Archive | 2016
Mathieu Douhard; Gabriel Pigeon; Marco Festa-Bianchet; Dave W. Coltmann; Simon Guillemette; Fanie Pelletier
Archive | 2017
Gabriel Pigeon; Fanie Pelletier