Gabriela Galiová
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriela Galiová.
Journal of Histochemistry and Cytochemistry | 2008
Eva Bártová; Jana Krejčí; Andrea Harničarová; Gabriela Galiová; Stanislav Kozubek
Epigenetic modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and ADP ribosylation, of the highly conserved core histones, H2A, H2B, H3, and H4, influence the genetic potential of DNA. The enormous regulatory potential of histone modification is illustrated in the vast array of epigenetic markers found throughout the genome. More than the other types of histone modification, acetylation and methylation of specific lysine residues on N-terminal histone tails are fundamental for the formation of chromatin domains, such as euchromatin, and facultative and constitutive heterochromatin. In addition, the modification of histones can cause a region of chromatin to undergo nuclear compartmentalization and, as such, specific epigenetic markers are non-randomly distributed within interphase nuclei. In this review, we summarize the principles behind epigenetic compartmentalization and the functional consequences of chromatin arrangement within interphase nuclei.
European Journal of Cell Biology | 2008
Gabriela Galiová; Eva Bártová; Ivan Raška; Jana Krejčí; Stanislav Kozubek
Recent studies have shown that histone code dictates the type and structure of chromatin. Bearing in mind the importance of A-type lamins for chromatin arrangement, we studied the effect of trichostatin A (TSA)-induced histone hyperacetylation in lamin A/C-deficient (LMNA-/-) fibroblasts. Lamin A/C deficiency caused condensation of chromosome territories and the nuclear reorganization of centromeric heterochromatin, which was accompanied by the appearance of a chain-like morphology of HP1beta foci. Conversely, histone deacetylase (HDAC) inhibition induced de-condensation of chromosome territories, which compensated the effect of lamin A/C deficiency on chromosome regions. The amount of heterochromatin in the area associated with the nuclear membrane was significantly reduced in LMNA-/- cells when compared with lamin A/C-positive (LMNA+/+) fibroblasts. TSA also decreased the amount of peripheral heterochromatin, similarly as lamin A/C deficiency. In both LMNA+/+ and LMNA-/- cells, physically larger chromosomes were positioned more peripherally as compared with the smaller ones, even after TSA treatment. Our observations indicate that lamin A/C deficiency causes not only reorganization of chromatin and some chromatin-associated domains, but also has an impact on the extent of chromosome condensation. As HDAC inhibition can compensate the lamin A/C-dependent chromatin changes, the interaction between lamins and specifically modified histones may play an important role in higher-order chromatin organization, which influences transcriptional activity.
Journal of Histochemistry and Cytochemistry | 2010
Eva Bártová; Andrea Harničarová Horáková; Radka Uhlířová; Ivan Raška; Gabriela Galiová; Darya Y. Orlova; Stanislav Kozubek
The nucleolus is a nuclear compartment that plays an important role in ribosome biogenesis. Some structural features and epigenetic patterns are shared between nucleolar and non-nucleolar compartments. For example, the location of transcriptionally active mRNA on extended chromatin loop species is similar to that observed for transcriptionally active ribosomal DNA (rDNA) genes on so-called Christmas tree branches. Similarly, nucleolus organizer region–bearing chromosomes located a distance from the nucleolus extend chromatin fibers into the nucleolar compartment. Specific epigenetic events, such as histone acetylation and methylation and DNA methylation, also regulate transcription of both rRNA- and mRNA-encoding loci. Here, we review the epigenetic mechanisms and structural features that regulate transcription of ribosomal and mRNA genes. We focus on similarities in epigenetic and structural regulation of chromatin in nucleoli and the surrounding non-nucleolar region and discuss the role of proteins, such as heterochromatin protein 1, fibrillarin, nucleolin, and upstream binding factor, in rRNA synthesis and processing.
Journal of Cellular Physiology | 2009
Jana Krejčí; Radka Uhlirova; Gabriela Galiová; Stanislav Kozubek; Jana Smigova; Eva Bártová
Epigenetic marks are important factors regulating the pluripotency and differentiation of human embryonic stem cells (hESCs). In this study, we analyzed H3K9 acetylation, an epigenetic mark associated with transcriptionally active chromatin, during endoderm‐like differentiation of hESCs. ChIP‐on‐chip analysis revealed that differentiation results in a genome‐wide decrease in promoter H3K9 acetylation. Among the 24,659 promoters analyzed, only 117 are likely to be involved in pluripotency, while 25 acetylated promoters are likely to be responsible for endoderm‐like differentiation. In pluripotent hESCs, the chromosomes with the highest absolute levels of H3K9 acetylation are chromosomes 1, 6, 2, 17, 11, and 12 (listed in order of decreasing acetylation). Chromosomes 17, 19, 11, 20, 22, and 12 are the most prone to differentiation‐related changes (both increased acetylation and deacetylation). When chromosome size (in Mb) was accounted for, the highest H3K9 acetylation levels were found on chromosome 19, 17, 6, 12, 11, and 1, and the greatest differentiation‐associated decreases in H3K9 acetylation occurred on chromosomes 19, 17, 11, 12, 16, and 1. The gene density and size of individual chromosomes were strongly correlated with the levels of H3K9 acetylation. Our analyses point to chromosomes 11, 12, 17, and 19 as being critical for hESC pluripotency and endoderm‐like differentiation. J. Cell. Physiol. 219: 677–687, 2009.
Developmental Dynamics | 2008
Eva Bártová; Gabriela Galiová; Jana Krejčí; Andrea Harničarová; Luděk Strašák; Stanislav Kozubek
Epigenetic histone (H3) modification patterns and the nuclear radial arrangement of select genetic elements were compared in human embryonic stem cells (hESCs) before and after differentiation. H3K9 acetylation, H3K9 trimethylation, and H3K79 monomethylation were reduced at the nuclear periphery of differentiated hESCs. Differentiation coincided with centromere redistribution, as evidenced by perinucleolar accumulation of the centromeric markers CENP‐A and H3K9me3, central repositioning of centromeres 1, 5, 19, and rearrangement of other centromeres at the nuclear periphery. The radial positions of PML, RARα genes, and human chromosomes 10, 12, 15, 17, and 19 remained relatively stable as hESCs differentiated. However, the female inactive H3K27‐trimethylated X chromosome occupied a more peripheral nuclear position in differentiated cells. Thus, pluripotent and differentiated hESCs have distinct nuclear patterns of heterochromatic structures (centromeres and inactive X chromosome) and epigenetic marks (H3K9me3, and H3K27me3), while relatively conserved gene density‐related radial chromatin distributions are already largely established in undifferentiated hES cells. Developmental Dynamics 237:3690–3702, 2008.
Chromosoma | 2010
Andrea Harničarová Horáková; Eva Bártová; Gabriela Galiová; Radka Uhlířová; Pavel Matula; Stanislav Kozubek
Heterochromatin protein 1 (HP1), which binds to sites of histone H3 lysine 9 (H3K9) methylation, is primarily responsible for gene silencing and the formation of heterochromatin. We observed that HP1β is located in both the chromocenters and fibrillarin-positive nucleoli interiors. However, HP1α and HP1γ occupied fibrillarin-positive compartments to a lesser extent, corresponding to the distinct levels of HP1 subtypes at the promoter of rDNA genes. Deficiency of histone methyltransferases SUV39h and/or inhibition of histone deacetylases (HDACi) decreased HP1β and H3K9 trimethylation at chromocenters, but not in fibrillarin-positive regions that co-localized with RNA polymerase I. Similarly, SUV39h- and HDACi-dependent nucleolar rearrangement and inhibition of rDNA transcription did not affect the association between HP1β and fibrillarin. Moreover, the presence of HP1β in nucleoli is likely connected with transcription of ribosomal genes and with the role of fibrillarin in nucleolar processes.
Journal of Cellular Physiology | 2009
Luděk Strašák; Eva Bártová; Andrea Harničarová; Gabriela Galiová; Jana Krejčí; Stanislav Kozubek
Histone variants and their epigenetic modifications determine genome function, particularly transcription. However, whether regulation of gene expression can be influenced by nuclear organization or vice versa is not completely clear. Here, we analyzed the effect of epigenetic changes induced by a histone deacetylase inhibitor (HDACi) on the nuclear radial rearrangement of select genomic regions and chromosomes. The HDACi, sodium butyrate (NaBt), induced differentiation of human adenocarcinoma HT29 cells as well as a genome‐wide increase in H3K9 acetylation. Three‐dimensional analysis of nuclear radial distributions revealed that this increase in H3K9 acetylation was often associated with a repositioning of select loci and chromosomes toward the nuclear center. On the other hand, many centromeres resided sites more toward the nuclear periphery, similar to sites occupied by chromosome X. In more than two‐thirds of events analyzed, central nuclear positioning correlated with a high level of H3K9 acetylation, while more peripheral positioning within interphase nuclei correlated with a lower level of acetylation. This was observed for the gene‐rich chromosomes 17 and 19, TP53, and CCND1 genes as well as for gene‐poor chromosome 18, APC gene, regions of low transcriptional activity (anti‐RIDGEs), and the relatively transcriptionally less active chromosome X. These results are consistent with a role for epigenetic histone modifications in governing the nuclear radial positioning of genomic regions during differentiation. J. Cell. Physiol. 220: 91–101, 2009.
Journal of Cellular Biochemistry | 2010
Radka Uhlířová; Andrea Harničarová Horáková; Gabriela Galiová; Soňa Legartová; Pavel Matula; Miloslava Fojtová; Miroslav Vařecha; Jana Amrichová; Jan Vondráček; Stanislav Kozubek; Eva Bártová
Telomeres are specialized chromatin structures that are situated at the end of linear chromosomes and play an important role in cell senescence and immortalization. Here, we investigated whether changes in histone signature influence the nuclear arrangement and positioning of telomeres. Analysis of mouse embryonic fibroblasts revealed that telomeres were organized into specific clusters that partially associated with centromeric clusters. This nuclear arrangement was influenced by deficiency of the histone methyltransferase SUV39h, LMNA deficiency, and the histone deacetylase inhibitor Trichostatin A (TSA). Similarly, nuclear radial distributions of telomeric clusters were preferentially influenced by TSA, which caused relocation of telomeres closer to the nuclear center. Telomeres also co‐localized with promyelocytic leukemia bodies (PML). This association was increased by SUV39h deficiency and decreased by LMNA deficiency. These differences could be explained by differing levels of the telomerase subunit, TERT, in SUV39h‐ and LMNA‐deficient fibroblasts. Taken together, our data show that SUV39h and A‐type lamins likely play a key role in telomere maintenance and telomere nuclear architecture. J. Cell. Biochem. 109: 915–926, 2010.
Journal of Structural Biology | 2010
Andrea Harničarová Horáková; Gabriela Galiová; Soňa Legartová; Stanislav Kozubek; Pavel Matula; Eva Bártová
The epigenetic modification of histones dictates the formation of euchromatin and heterochromatin domains. We studied the effects of a deficiency of histone methyltransferase, SUV39h, and trichostatin A-dependent hyperacetylation on the structural stability of centromeric clusters, called chromocentres. We did not observe the expected disintegration of chromocentres, but both SUV39h deficiency and hyperacetylation in SUV39h+/+ cells induced the re-positioning of chromocentres closer to the nuclear periphery. Conversely, TSA treatment of SUV39h-/- cells re-established normal nuclear radial positioning of chromocentres. This structural re-arrangement was likely caused by several epigenetic events at centromeric heterochromatin. In particular, reciprocal exchanges between H3K9me1, H3K9me2, H3K9me3, DNA methylation, and HP1 protein levels influenced chromocentre nuclear composition. For example, H3K9me1 likely substituted for the function of H3K9me3 in chromocentre nuclear arrangement and compaction. Our results illustrate the important and interchangeable roles of epigenetic marks for chromocentre integrity. Therefore, we propose a model for epigenetic regulation of nuclear stability of centromeric heterochromatin in the mouse genome.
Blood Cells Molecules and Diseases | 2004
Gabriela Galiová; Eva Bártová; Stanislav Kozubek