Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriela Krasteva is active.

Publication


Featured researches published by Gabriela Krasteva.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Cholinergic chemosensory cells in the trachea regulate breathing

Gabriela Krasteva; Brendan J. Canning; Petra Hartmann; Tibor Z. Veres; Tamara Papadakis; Christian Mühlfeld; Kirstin Schliecker; Yvonne N. Tallini; Armin Braun; Holger Hackstein; Nelli Baal; Eberhard Weihe; Burkhard Schütz; Michael I. Kotlikoff; Inés Ibañez-Tallon; Wolfgang Kummer

In the epithelium of the lower airways, a cell type of unknown function has been termed “brush cell” because of a distinctive ultrastructural feature, an apical tuft of microvilli. Morphologically similar cells in the nose have been identified as solitary chemosensory cells responding to taste stimuli and triggering trigeminal reflexes. Here we show that brush cells of the mouse trachea express the receptors (Tas2R105, Tas2R108), the downstream signaling molecules (α-gustducin, phospholipase Cβ2) of bitter taste transduction, the synthesis and packaging machinery for acetylcholine, and are addressed by vagal sensory nerve fibers carrying nicotinic acetylcholine receptors. Tracheal application of an nAChR agonist caused a reduction in breathing frequency. Similarly, cycloheximide, a Tas2R108 agonist, evoked a drop in respiratory rate, being sensitive to nicotinic receptor blockade and epithelium removal. This identifies brush cells as cholinergic sensors of the chemical composition of the lower airway luminal microenvironment that are directly linked to the regulation of respiration.


Laboratory Investigation | 2006

FRET–CLSM and double-labeling indirect immunofluorescence to detect close association of proteins in tissue sections

Peter König; Gabriela Krasteva; Claudia Tag; Inke R König; Christoph Arens; Wolfgang Kummer

It is pivotal to identify protein–protein interaction in situ to understand protein function. Conventional methods to determine the interaction of proteins destruct tissue or are applicable to cell culture only. To identify association of proteins in cells in tissue, we adapted indirect double-labeling immunofluorescence and combined it with conventional confocal laser scanning microscopy (CLSM) to measure fluorescence resonance energy transfer (FRET). As a model system, we chose caveolin-1α and caveolin-2, two major components of endothelial caveolae, and examined their interaction in the endothelium of vessels in fixed tissues of laboratory animals and human glomus tumors. Several methodological aspects were examined. Measuring the absolute increase in fluorescence (ΔIF) was superior compared to determining the relative FRET efficiency, because it is more robust against small increases of fluorescence during measurements that results from unavoidable minimal crossreactivity of the secondary antibodies. Both, sequential and simultaneous incubation of secondary antibodies result in robust and reliable increases in ΔIF. If incubated sequentially, however, the acceptor-labeled secondary antibody should be applied first. The size of the secondary reagent (F(ab′)2 vs whole antibody) has no major influence. In conclusion, CLSM–FRET can measure close spatial association of proteins in situ and can be applied to human surgical material.


Journal of Molecular Neuroscience | 2006

Coexpression and spatial association of nicotinic acetylcholine receptor subunits α7 and α10 in rat sympathetic neurons

Katrin S. Lips; Peter König; Katrin Schätzle; Uwe Pfeil; Gabriela Krasteva; Markus Spies; Rainer Viktor Haberberger; Sergei A. Grando; Wolfgang Kummer

Fast excitatory synaptic transmission in sympathetic ganglia is mediated by nicotinic acetylcholine receptors (nAChRs). Although it is known that the nAChR alpha7-subunit occurs in sympathetic ganglia, the expression of the recently cloned subunit alpha10 (Elgoyhen et al., 2001; Lustig et al., 2001; Sgard et al., 2002) has not been analyzed. Until now, functional receptors containing alpha10-subunits have been found only in combination with alpha9-subunits (Elgoyhen et al., 2001; Lustig et al., 2001; Sgard et al., 2002). The alpha9-subunit exhibits a restricted expression pattern, whereas the alpha10-subunit is expressed more widely. This broad distribution resembles more closely that known for subunit alpha7 than for subunit alpha9. On this background, we investigated the distribution of nAChR subunits alpha7, alpha9, and alpha10 in rat sympathetic ganglia and studied a possible interaction between subunit alpha7 and potential partners by double-labeling immunofluorescence and fluorescence resonance energy transfer (FRET) (Kam et al., 1995; Jares-Erijman and Jovin, 2003).


Histochemistry and Cell Biology | 2012

Cholinergic chemosensory cells in the auditory tube

Gabriela Krasteva; Petra Hartmann; Tamara Papadakis; Lars Wessels; Eberhard Weihe; Burkhard Schütz; Alexander C. Langheinrich; Vladimir Chubanov; Thomas Gudermann; I. Ibanez-Tallon; Wolfgang Kummer

The luminal composition of the auditory tube influences its function. The mechanisms involved in the monitoring are currently not known. For the lower respiratory epithelium, such a sentinel role is carried out by cholinergic brush cells. Here, using two different mouse strains expressing eGFP under the control of the promoter of choline acetyltransferase (ChAT), we show the presence of solitary cholinergic villin-positive brush cells also in the mouse auditory tube epithelium. They express the vesicular acetylcholine (ACh) transporter and proteins of the taste transduction pathway such as α-gustducin, phospholipase C beta 2 (PLCβ2) and transient receptor potential cation channel subfamily M member 5 (TRPM5). Immunoreactivity for TRPM5 and PLCβ2 was found regularly, whereas α-gustducin was absent in approximately 15% of the brush cells. Messenger RNA for the umami taste receptors (TasR), Tas1R1 and 3, and for the bitter receptors, Tas2R105 and Tas2R108, involved in perception of cycloheximide and denatonium were detected in the auditory tube. Using a transgenic mouse that expresses eGFP under the promotor of the nicotinic ACh receptor α3-subunit, we identified cholinoceptive nerve fibers that establish direct contacts to brush cells in the auditory tube. A subpopulation of these fibers displayed also CGRP immunoreactivity. Collectively, we show for the first time the presence of brush cells in the auditory tube. These cells are equipped with all proteins essential for sensing the composition of the luminal microenvironment and for communication of the changes to the CNS via attached sensory nerve fibers.


PLOS ONE | 2009

Serotonin Increases Cilia-Driven Particle Transport via an Acetylcholine-Independent Pathway in the Mouse Trachea

Peter König; Benjamin Krain; Gabriela Krasteva; Wolfgang Kummer

Background Mucociliary clearance in the airways is driven by the coordinated beating of ciliated cells. Classical neuromediators such as noradrenalin and acetylcholine increase ciliary beat frequency and thus cilia-driven transport. Despite the fact that the neuromediator serotonin is ciliostimulatory in invertebrates and has been implied in releasing acetylcholine from the airway epithelium, its role in regulating cilia function in vertebrate airways is not established. Methodology/Principal Findings We examined the effects of serotonin on ciliary beat frequency and cilia-driven particle transport in the acutely excised submerged mouse trachea and determined the sources of serotonin in this tissue by immunohistochemistry. Serotonin (100 µM) increased cilary beat frequency (8.9±1.2 Hz to 17.0±2.7 Hz) and particle transport speed (38.9±4.6 µm/s to 83.4±8.3 µm/s) to an extent that was comparable to a supramaximal dose of ATP. The increase in particle transport speed was totally prevented by methysergide (100 µM). Blockade of muscarinic receptors by atropine (1 µM) did not reduce the effect of serotonin, although it was effective in preventing the increase in particle transport speed mediated by muscarine (100 µM). Immunohistochemistry demonstrated serotonin in mast cells pointing towards mast cells and platelets as possible endogenous sources of serotonin. Conclusions/Significance These results indicate that serotonin is a likely endogenous mediator that can increase cilia-driven transport independent from acetylcholine during activation of mast cells and platelets.


Histochemistry and Cell Biology | 2012

“Tasting” the airway lining fluid

Gabriela Krasteva; Wolfgang Kummer

Specialized epithelial cells of the respiratory tract have been termed “solitary chemosensory cells” based upon the expression of components of the canonical sweet, umami and bitter taste transduction pathway, or “brush cells” based upon their characteristic morphological feature, i.e. an apical, brush-like tuft of rigid, villin containing microvilli. Cells defined by these criteria might not match one-to-one, and a generally accepted terminology is still lacking. With respect to cellular shape, ultrastructure, expression of elements of the taste transduction cascade, innervation and synapse formation, and effects evoked upon their stimulation, it appears that chemosensory/brush in the upper respiratory tract (nasal respiratory mucosa, vomeronasal duct, auditory tube), in the olfactory mucosa, in the larynx, in the lower airways (trachea, bronchi) and in the alveolar region (rat only) each represent distinct groups. Still, they have in common to monitor the chemical composition of the mucosal lining fluid. They serve as sentinels detecting bacterial colonization or the presence of other harmful components in the mucosal lining fluid, leading to the initiation of avoidance reflexes and/or local defense mechanisms which are adapted to their anatomical localization. Free nerve endings are also responsive to inhaled irritants and further work will be needed to discriminate between the contributions of such nerve endings and chemosensory cells in chemical monitoring and defense initiation. Interestingly, there is first emerging evidence that respiratory chemosensory cells may respond to more than one canonical taste quality so that they, in analogy to polymodal nociceptors, may serve as polymodal chemosensors of potentially dangerous signals.


The FASEB Journal | 2010

The antimicrobial peptide cathelicidin enhances activation of lung epithelial cells by LPS

Renat Shaykhiev; Johannes Sierigk; Christian Herr; Gabriela Krasteva; Wolfgang Kummer; Robert Bals

Epithelial cells (ECs) are usually hyporesponsive to various microbial products. Detection of lipopolysaccharide (LPS), the major component of gram-negative bacteria, is impeded, at least in part, by intracellular sequestration of its receptor, Toll-like receptor-4 (TLR4). In this study, using human bronchial ECs (hBECs) as a model of mucosal epithelium, we tested the hypothesis that the human LPS-binding, membrane-active cationic host defense peptide cathelicidin LL-37 augments epithelial response to LPS by facilitating its delivery to TLR4-containing intracellular compartments. We found that LL-37 significantly increases uptake of LPS by ECs with subsequent targeting to cholera toxin subunit B-labeled structures and lysosomes. This uptake is peptide specific, dose and time dependent, and involves the endocytotic machinery, functional lipid rafts, and epidermal growth factor receptor signaling. Cathelicidin-dependent LPS internalization resulted in significant increased release of the inflammatory cytokines IL-6 and IL-8. This indicates that, in ECs, this peptide may replace LPS-binding protein functions. In polarized ECs, the effect of LL-37 was restricted to the basolateral compartment of the epithelial membrane, suggesting that LL-37-mediated activation of ECs by LPS may be relevant to disease conditions associated with damage to the epithelial barrier. In summary, our study identified a novel role of LL-37 in host-microbe interactions as a host factor that licenses mucosal ECs to respond to LPS.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2010

Muscarinic receptor-mediated bronchoconstriction is coupled to caveolae in murine airways

Heike Schlenz; Wolfgang Kummer; Gitte Jositsch; Jürgen Wess; Gabriela Krasteva

Cholinergic bronchoconstriction is mediated by M(2) and M(3) muscarinic receptors (MR). In heart and urinary bladder, MR are linked to caveolin-1 or -3, the structural proteins of caveolae. Caveolae are cholesterol-rich, omega-shaped invaginations of the plasma membrane. They provide a scaffold for multiple G protein receptors and membrane-bound enzymes, thereby orchestrating signaling into the cell interior. Hence, we hypothesized that airway MR signaling pathways are coupled to caveolae as well. To address this issue, we determined the distribution of caveolin isoforms and MR subtype M2R in murine and human airways and investigated protein-protein associations by fluorescence resonance energy transfer (FRET)-confocal laser scanning microscopy (CLSM) analysis in immunolabeled murine tissue sections. Bronchoconstrictor responses of murine bronchi were recorded in lung-slice preparations before and after caveolae disruption by methyl-β-cyclodextrin, with efficiency of this treatment being validated by electron microscopy. KCl-induced bronchoconstriction was unaffected after treatment, demonstrating functional integrity of the smooth muscle. Caveolae disruption decreased muscarine-induced bronchoconstriction in wild-type and abolished it in M2R(-/-) and M3R(-/-) mice. Thus M2R and M3R signaling pathways require intact caveolae. Furthermore, we identified a presumed skeletal and cardiac myocyte-specific caveolin isoform, caveolin-3, in human and murine bronchial smooth muscle and found it to be associated with M2R in situ. In contrast, M2R was not associated with caveolin-1, despite an in situ association of caveolin-1 and caveolin-3 that was detected. Here, we demonstrated that M2R- and M3R-mediated bronchoconstriction is caveolae-dependent. Since caveolin-3 is directly associated with M2R, we suggest caveolin-3 as novel regulator of M2R-mediated signaling.


Cell and Tissue Research | 2006

Down-regulation of vasoactive intestinal peptide and altered expression of its receptors in rat diabetic cardiomyopathy

Magdalena Chottova Dvorakova; Uwe Pfeil; Jitka Kuncová; Jitka Švíglerová; Giovanni Galvis; Gabriela Krasteva; Peter König; Veronika Grau; Jana Slavikova; Wolfgang Kummer

Vasoactive intestinal peptide (VIP) is a vasorelaxant peptide that addresses two receptor subtypes, VPAC1 and VPAC2. It stimulates insulin secretion and mediates anti-inflammatory effects and has been proposed for treatment of type 2 and autoimmune diabetes. In the heart, VIP is produced and released primarily by intrinsic neurons and improves cardiac perfusion and function. Here, we investigated the involvement of this system in the events underlying development of experimentally induced diabetic cardiomyopathy. Rats received a single streptozotocin injection, and cardiac VIP content [radioimmune assay (RIA)], expression of the VIP precursors VPAC1 and VPAC2 [real-time reverse transcription-polymerase chain reaction (RT-PCR)], and VPAC1 and VPAC2 tissue distribution (immunohistochemistry) were assessed 4, 8, and 16 weeks thereafter and compared with corresponding vehicle-treated controls. Cardiac neuropathy manifests progressively during the first 4 months of diabetes at the preproVIP mRNA and VIP peptide level and is accompanied by initial down-regulation of VPAC2 at one prime target of VIP-containing axons, i.e., smooth muscle cells of coronary arterioles. VPAC1 is expressed by macrophages. After initial changes that are specific for atria and ventricles, respectively, VPAC1 and VPAC2 expression return to control levels at 16 weeks despite ongoing loss of VIP. Given the cardioprotective role of the VIP signaling system, the persistence of receptors has therapeutic implications since it is the prerequisite for trials with VPAC2 agonists.


Respiratory Research | 2006

Caveolin-1 and -2 in airway epithelium: expression and in situ association as detected by FRET-CLSM

Gabriela Krasteva; Uwe Pfeil; Marek Drab; Wolfgang Kummer; Peter König

BackgroundCaveolae are involved in diverse cellular functions such as signal transduction, cholesterol homeostasis, endo- and transcytosis, and also may serve as entry sites for microorganisms. Hence, their occurrence in epithelium of the airways might be expected but, nonetheless, has not yet been examined.MethodsWestern blotting, real-time quantitative PCR analysis of abraded tracheal epithelium and laser-assisted microdissection combined with subsequent mRNA analysis were used to examine the expression of cav-1 and cav-2, two major caveolar coat proteins, in rat tracheal epithelium. Fluorescence immunohistochemistry was performed to locate caveolae and cav-1 and -2 in the airway epithelium of rats, mice and humans. Electron-microscopic analysis was used for the identification of caveolae. CLSM-FRET analysis determined the interaction of cav-1α and cav-2 in situ.ResultsWestern blotting and laser-assisted microdissection identified protein and transcripts, respectively, of cav-1 and cav-2 in airway epithelium. Real-time quantitative RT-PCR analysis of abraded tracheal epithelium revealed a higher expression of cav-2 than of cav-1. Immunoreactivities for cav-1 and for cav-2 were co-localized in the cell membrane of the basal cells and basolaterally in the ciliated epithelial cells of large airways of rat and human. However, no labeling for cav-1 or cav-2 was observed in the epithelial cells of small bronchi. Using conventional double-labeling indirect immunofluorescence combined with CLSM-FRET analysis, we detected an association of cav-1α and -2 in epithelial cells. The presence of caveolae was confirmed by electron microscopy. In contrast to human and rat, cav-1-immunoreactivity and caveolae were confined to basal cells in mice. Epithelial caveolae were absent in cav-1-deficient mice, implicating a requirement of this caveolar protein in epithelial caveolae formation.ConclusionThese results show that caveolae and caveolins are integral membrane components in basal and ciliated epithelial cells, indicating a crucial role in these cell types. In addition to their physiological role, they may be involved in airway infection.

Collaboration


Dive into the Gabriela Krasteva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Pfeil

University of Giessen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge