Tamara Papadakis
University of Giessen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tamara Papadakis.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Gabriela Krasteva; Brendan J. Canning; Petra Hartmann; Tibor Z. Veres; Tamara Papadakis; Christian Mühlfeld; Kirstin Schliecker; Yvonne N. Tallini; Armin Braun; Holger Hackstein; Nelli Baal; Eberhard Weihe; Burkhard Schütz; Michael I. Kotlikoff; Inés Ibañez-Tallon; Wolfgang Kummer
In the epithelium of the lower airways, a cell type of unknown function has been termed “brush cell” because of a distinctive ultrastructural feature, an apical tuft of microvilli. Morphologically similar cells in the nose have been identified as solitary chemosensory cells responding to taste stimuli and triggering trigeminal reflexes. Here we show that brush cells of the mouse trachea express the receptors (Tas2R105, Tas2R108), the downstream signaling molecules (α-gustducin, phospholipase Cβ2) of bitter taste transduction, the synthesis and packaging machinery for acetylcholine, and are addressed by vagal sensory nerve fibers carrying nicotinic acetylcholine receptors. Tracheal application of an nAChR agonist caused a reduction in breathing frequency. Similarly, cycloheximide, a Tas2R108 agonist, evoked a drop in respiratory rate, being sensitive to nicotinic receptor blockade and epithelium removal. This identifies brush cells as cholinergic sensors of the chemical composition of the lower airway luminal microenvironment that are directly linked to the regulation of respiration.
Naunyn-schmiedebergs Archives of Pharmacology | 2009
Gitte Jositsch; Tamara Papadakis; Rainer Viktor Haberberger; Miriam Wolff; Jürgen Wess; Wolfgang Kummer
Acetylcholine (ACh) is a major regulator of visceral function exerting pharmacologically relevant effects upon smooth muscle tone and epithelial function via five types of muscarinic receptors (M1R-M5R). In this paper, we assessed the specificity of muscarinic receptor (MR) antibodies in immunohistochemical labelling on tissue sections by analysing specimens from wild-type and respective gene-deficient mice. Of 24 antibodies evaluated in this study, 16 were tested at 18 different conditions each, and eight of them in 21 different protocols, resulting in a total number of 456 antibody/protocol combinations. Each of them was tested at four antibody dilutions at minimum, so that finally, at least 1,824 conditions were evaluated. For each of them, dorsal root ganglia, urinary bladder and cross-sections through all thoracic viscera were investigated. In all cases where the antigen was available, at least one incubation condition was identified in which only select cell types were immunolabelled in the positive control but remained unlabelled in the pre-absorption control. With two exceptions (M2R antibodies), however, all antibodies produced identical immunohistochemical labelling patterns in tissues taken from corresponding gene-deficient mice even when the pre-absorption control in wild-type mice suggested specificity. Hence, the present data demonstrate the unpleasant fact that reliable immunohistochemical localisation of MR subtypes with antibodies is the exception rather than the rule. Immunohistochemical detection of MR subtype localisation in tissue sections of peripheral organs is limited to the M2R subtype utilising the most commonly used methodological approaches.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Klaus Deckmann; Katharina Filipski; Gabriela Krasteva-Christ; Martin Fronius; Mike Althaus; Amir Rafiq; Tamara Papadakis; Liane Renno; Innokentij Jurastow; Lars Wessels; Miriam Wolff; Burkhard Schütz; Eberhard Weihe; Vladimir Chubanov; Thomas Gudermann; Jochen Klein; T. Bschleipfer; Wolfgang Kummer
Significance We report the presence of a previously unidentified cholinergic, polymodal chemosensory cell in the mammalian urethra, the potential portal of entry for bacteria and harmful substances into the urogenital system. These cells exhibit structural markers of respiratory chemosensory cells (“brush cells”). They use the classical taste transduction cascade to detect potential hazardous compounds (bitter, umami, uropathogenic bacteria) and release acetylcholine in response. They lie next to sensory nerve fibers that carry acetylcholine receptors, and placing a bitter compound in the urethra enhances activity of the bladder detrusor muscle. Thus, monitoring of urethral content is linked to bladder control via a previously unrecognized cell type. Chemosensory cells in the mucosal surface of the respiratory tract (“brush cells”) use the canonical taste transduction cascade to detect potentially hazardous content and trigger local protective and aversive respiratory reflexes on stimulation. So far, the urogenital tract has been considered to lack this cell type. Here we report the presence of a previously unidentified cholinergic, polymodal chemosensory cell in the mammalian urethra, the potential portal of entry for bacteria and harmful substances into the urogenital system, but not in further centrally located parts of the urinary tract, such as the bladder, ureter, and renal pelvis. Urethral brush cells express bitter and umami taste receptors and downstream components of the taste transduction cascade; respond to stimulation with bitter (denatonium), umami (monosodium glutamate), and uropathogenic Escherichia coli; and release acetylcholine to communicate with other cells. They are approached by sensory nerve fibers expressing nicotinic acetylcholine receptors, and intraurethral application of denatonium reflexively increases activity of the bladder detrusor muscle in anesthetized rats. We propose a concept of urinary bladder control involving a previously unidentified cholinergic chemosensory cell monitoring the chemical composition of the urethral luminal microenvironment for potential hazardous content.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2009
Uwe Pfeil; Muhammad Aslam; Renate Paddenberg; Karin Quanz; Chia L. Chang; Jae-Il Park; Barbara Gries; Amir Rafiq; Petra Faulhammer; Anna Goldenberg; Tamara Papadakis; Thomas Noll; Sheau Y. T. Hsu; Norbert Weissmann; Wolfgang Kummer
Accumulating evidence suggests a pivotal role of the calcitonin receptor-like receptor (CRLR) signaling pathway in preventing damage of the lung by stabilizing pulmonary barrier function. Intermedin (IMD), also termed adrenomedullin-2, is the most recently identified peptide targeting this receptor. Here we investigated the effect of hypoxia on the expression of IMD in the murine lung and cultured murine pulmonary microvascular endothelial cells (PMEC) as well as the role of IMD in regulating vascular permeability. Monoclonal IMD antibodies were generated, and transcript levels were assayed by quantitative RT-PCR. The promoter region of IMD gene was analyzed, and the effect of hypoxia-inducible factor (HIF)-1alpha on IMD expression was investigated in HEK293T cells. Isolated murine lungs and a human lung microvascular endothelial cell monolayer model were used to study the effect of IMD on vascular permeability. IMD was identified as a pulmonary endothelial peptide by immunohistochemistry and RT-PCR. Hypoxia caused an upregulation of IMD mRNA in the murine lung and PMEC. As shown by these results, HIF-1alpha enhances IMD promoter activity. Our functional studies showed that IMD abolished the increase in pressure-induced endothelial permeability. Moreover, IMD decreased basal and thrombin-induced hyperpermeability of an endothelial cell monolayer in a receptor-dependent manner and activated PKA in these cells. In conclusion, IMD is a novel hypoxia-induced gene and a potential interventional agent for the improvement of endothelial barrier function in systemic inflammatory responses and hypoxia-induced vascular leakage.
Histochemistry and Cell Biology | 2012
Gabriela Krasteva; Petra Hartmann; Tamara Papadakis; Lars Wessels; Eberhard Weihe; Burkhard Schütz; Alexander C. Langheinrich; Vladimir Chubanov; Thomas Gudermann; I. Ibanez-Tallon; Wolfgang Kummer
The luminal composition of the auditory tube influences its function. The mechanisms involved in the monitoring are currently not known. For the lower respiratory epithelium, such a sentinel role is carried out by cholinergic brush cells. Here, using two different mouse strains expressing eGFP under the control of the promoter of choline acetyltransferase (ChAT), we show the presence of solitary cholinergic villin-positive brush cells also in the mouse auditory tube epithelium. They express the vesicular acetylcholine (ACh) transporter and proteins of the taste transduction pathway such as α-gustducin, phospholipase C beta 2 (PLCβ2) and transient receptor potential cation channel subfamily M member 5 (TRPM5). Immunoreactivity for TRPM5 and PLCβ2 was found regularly, whereas α-gustducin was absent in approximately 15% of the brush cells. Messenger RNA for the umami taste receptors (TasR), Tas1R1 and 3, and for the bitter receptors, Tas2R105 and Tas2R108, involved in perception of cycloheximide and denatonium were detected in the auditory tube. Using a transgenic mouse that expresses eGFP under the promotor of the nicotinic ACh receptor α3-subunit, we identified cholinoceptive nerve fibers that establish direct contacts to brush cells in the auditory tube. A subpopulation of these fibers displayed also CGRP immunoreactivity. Collectively, we show for the first time the presence of brush cells in the auditory tube. These cells are equipped with all proteins essential for sensing the composition of the luminal microenvironment and for communication of the changes to the CNS via attached sensory nerve fibers.
Journal of Histochemistry and Cytochemistry | 2005
Peter König; Jürgen Dedio; Stefanie Oess; Tamara Papadakis; Axel Fischer; Werner Müller-Esterl; Wolfgang Kummer
Endothelial nitric oxide synthase (eNOS), the major nitric oxide (NO)-generating enzyme of the vasculature, is regulated through multiple interactions with proteins, including caveolin-1, Hsp90, Ca2+-calmodulin, and the recently discovered eNOS-interacting protein, NOSIP. Previous studies indicate that NOSIP may contribute to the intricate regulation of eNOS activity and availability. Because eNOS has been shown to be abundantly expressed in the airways, we determined the expression and cellular localization of NOSIP in rat trachea and lung by RT-PCR and immunohistochemistry and examined the interaction of NOSIP with eNOS in lung by coimmunoprecipitation. In tracheal epithelium and lung, NOSIP mRNA expression was prevalent, as shown by RT-PCR, and the corresponding protein interacted with eNOS, as demonstrated by coimmunoprecipitation. Using immunohistochemistry, we found both NOSIP and eNOS immunoreactivity in ciliated epithelial cells of trachea and bronchi, while Clara cells showed immunoreactivity for NOSIP only. NOSIP and eNOS were present in vascular and bronchial smooth muscle cells of large arteries and airways, whereas endothelial cells, as well as bronchiolar and arteriolar smooth muscle cells, exclusively stained for NOSIP. Our results point to functional role(s) of NOSIP in the control of airway and vascular diameter, mucosal secretion, NO synthesis in ciliated epithelium, and, therefore, of mucociliary and bronchial function.
PLOS ONE | 2011
Christian Mühlfeld; Suman K. Das; Frank R. Heinzel; Albrecht Schmidt; Heiner Post; Silvia Schauer; Tamara Papadakis; Wolfgang Kummer; Gerald Hoefler
Cancer is often associated with cachexia, cardiovascular symptoms and autonomic dysregulation. We tested whether extracardiac cancer directly affects the innervation of left ventricular myocardium. Mice injected with Lewis lung carcinoma cells (tumor group, TG) or PBS (control group, CG) were analyzed after 21 days. Cardiac function (echocardiography), serum levels of TNF-α and Il-6 (ELISA), structural alterations of cardiomyocytes and their innervation (design-based stereology) and levels of innervation-related mRNA (quantitative RT-PCR) were analysed. The groups did not differ in various functional parameters. Serum levels of TNF-α and Il-6 were elevated in TG. The total length of axons in the left ventricle was reduced. The number of dense core vesicles per axon profile was reduced. Decreased myofibrillar volume, increased sarcoplasmic volume and increased volume of lipid droplets were indicative of metabolic alterations of TG cardiomyocytes. In the heart, the mRNA level of nerve growth factor was reduced whereas that of β1-adrenergic receptor was unchanged in TG. In the stellate ganglion of TG, mRNA levels of nerve growth factor and neuropeptide Y were decreased and that of tyrosine hydroxylase was increased. In summary, cancer induces a systemic pro-inflammatory state, a significant reduction in myocardial innervation and a catabolic phenotype of cardiomyocytes in the mouse. Reduced expression of nerve growth factor may account for the reduced myocardial innervation.
Journal of Applied Physiology | 2010
Christian Mühlfeld; Tamara Papadakis; Gabriela Krasteva; Jens R. Nyengaard; Ute Hahn; Wolfgang Kummer
Quantitative information about the innervation is essential to analyze the structure-function relationships of organs. So far, there has been no unbiased stereological tool for this purpose. This study presents a new unbiased and efficient method to quantify the total length of axons in a given reference volume, illustrated on the left ventricle of the mouse heart. The method is based on the following steps: 1) estimation of the reference volume; 2) randomization of location and orientation using appropriate sampling techniques; 3) counting of nerve fiber profiles hit by a defined test area within an unbiased counting frame on paraffin sections stained immunohistochemically for protein gene product 9.5; 4) electron microscopic estimation of the mean number of axon profiles contained in one nerve fiber profile; 5) estimation of the degree of tissue shrinkage of specimens in paraffin; and 6) calculation of the total axon length within the reference volume, taking tissue shrinkage into account. In a set of five mouse hearts, the total length of axons ramifying between cardiomyocytes ranged between approximately 50 and 100 m, with a mean of 75.98 m (SD 23.73). The time required for the microscopical analysis was approximately 8 h/animal for an experienced observer. Using antibodies specific for different neuron subtypes and immunoelectron microscopy, this method is also suited to estimate the total axon length of neurons expressing different transmitters. This new and efficient method is particularly useful when structural remodeling takes place and is suspected to involve gain or loss of axons.
International Immunopharmacology | 2015
Stephanie Wiederhold; Tamara Papadakis; Vladimir Chubanov; Thomas Gudermann; Gabriela Krasteva-Christ; Wolfgang Kummer
We recently identified a specialized cholinergic cell type in tracheal and urethral epithelium that utilizes molecules of the canonical taste transduction signaling cascade to sense potentially harmful substances in the luminal content. Upon stimulation, this cell initiates protective reflexes. Assuming a sentinel role of such cells at mucosal surfaces exposed to bacteria, we hypothesized their occurrence also in ocular mucosal surfaces. Utilizing a mouse strain expressing eGFP under the promoter of the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT-eGFP), we observed a cholinergic cell in the murine conjunctiva. Singular cholinergic cells reaching the epithelial surface with slender processes were detected in fornical, but neither in bulbar nor palpebral epithelia. These cells were found neither in the lacrimal canaliculi, nor in the lacrimal sac and the nasolacrimal duct. Cholinergic conjunctival epithelial cells were immunoreactive for components of the canonical taste transduction signaling cascade, i.e. α-gustducin, phospholipase Cβ2 and the monovalent cation channel TRPM5. Calcitonin gene-related peptide- and substance P-immunoreactive sensory nerve fibers were observed extending into the conjunctival epithelium approaching slender ChAT-eGFP-positive cells. In addition, we noted both ChAT-eGFP expression and α-gustducin-immunoreactivity, albeit in different cell populations, in occasionally occurring lymphoid follicles of the nictitating membrane. The data show a previously unidentified cholinergic cell in murine conjunctiva with chemosensory traits that presumably utilizes acetylcholine for signaling. In analogy to similar cells described in the respiratory and urethral epithelium, it might serve to detect bacterial products and to initiate protective reflexes.
Cell and Tissue Research | 2016
Uwe Pfeil; Subhashini Bharathala; Ghulam Murtaza; Petra Mermer; Tamara Papadakis; Andreas Boening; Wolfgang Kummer
Heart valves are highly organized structures determining the direction of blood flow through the heart. Smooth muscle cells within the valve are thought to play an active role during the heart cycle, rather than being just passive flaps. The mature heart valve is composed of extracellular matrix (ECM), various differentiations of valvular interstitial cells (VIC), smooth muscle cells and overlying endothelium. VIC are important for maintaining the structural integrity of the valve, thereby affecting valve function and ECM remodelling. Accumulating evidence suggests an important role of calcitonin receptor-like receptor (CRL) signalling in preventing heart damage under several pathological conditions. Thus we investigate the existence of a putative CRL signalling system in mouse and human heart valves by real-time RT-PCR, laser-assisted microdissection, immunofluorescence and NADPH-diaphorase histochemistry. Mouse and human heart valves expressed mRNAs for the CRL ligands adrenomedullin (AM), adrenomedullin-2 (AM-2) and calcitonin gene-related peptide (CGRP) and for their receptor components, i.e., CRL and receptor-activity-modifying proteins 1-3. Immunofluorescence analysis revealed AM-, AM-2- and CRL-immunolabelling in endothelial cells and VIC, whereas CGRP immunoreactivity was restricted to nerve fibres and some endothelial cells. Nitric oxide synthase activity, as demonstrated by NADPH-diaphorase histochemistry, was shown mainly in valvular endothelial cells in mice, whereas in human aortic valves, VIC and smooth muscle cells were positive. Our results showed the presence of an intrinsic AM/AM-2/CGRP signalling system in murine and human heart valves with distinct cellular localization, suggesting its involvement in the regulation of valve stiffness and ECM production and turnover.