Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriela Lopez-Gonzalez is active.

Publication


Featured researches published by Gabriela Lopez-Gonzalez.


Science | 2009

Drought sensitivity of the Amazon rainforest

Oliver L. Phillips; Luiz E. O. C. Aragão; Simon L. Lewis; Joshua B. Fisher; Jon Lloyd; Gabriela Lopez-Gonzalez; Yadvinder Malhi; Abel Monteagudo; J. Peacock; Carlos A. Quesada; Geertje M.F. van der Heijden; Samuel Almeida; Iêda Leão do Amaral; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Olaf Banki; Lilian Blanc; Damien Bonal; Paulo M. Brando; Jérôme Chave; Atila Alves de Oliveira; Nallaret Dávila Cardozo; Claudia I. Czimczik; Ted R. Feldpausch; Maria Aparecida Freitas; Emanuel Gloor; Niro Higuchi; Eliana M. Jimenez; Gareth Lloyd

Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 × 1015 to 1.6 × 1015 grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.


Nature | 2009

Increasing carbon storage in intact African tropical forests

Simon L. Lewis; Gabriela Lopez-Gonzalez; Bonaventure Sonké; Kofi Affum-Baffoe; Timothy R. Baker; Lucas Ojo; Oliver L. Phillips; Jan Reitsma; Lee White; James A. Comiskey; Marie‐Noël Djuikouo K; Corneille E. N. Ewango; Ted R. Feldpausch; Alan Hamilton; Manuel Gloor; Terese B. Hart; Annette Hladik; Jon Lloyd; Jon C. Lovett; Jean-Remy Makana; Yadvinder Malhi; Frank Mbago; Henry J. Ndangalasi; J. Peacock; Kelvin S.-H. Peh; Douglas Sheil; Terry Sunderland; Michael D. Swaine; James Taplin; David Taylor

The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide. The role of tropical forests is critical because they are carbon-dense and highly productive. Inventory plots across Amazonia show that old-growth forests have increased in carbon storage over recent decades, but the response of one-third of the world’s tropical forests in Africa is largely unknown owing to an absence of spatially extensive observation networks. Here we report data from a ten-country network of long-term monitoring plots in African tropical forests. We find that across 79 plots (163 ha) above-ground carbon storage in live trees increased by 0.63 Mg C ha-1 yr-1 between 1968 and 2007 (95% confidence interval (CI), 0.22–0.94; mean interval, 1987–96). Extrapolation to unmeasured forest components (live roots, small trees, necromass) and scaling to the continent implies a total increase in carbon storage in African tropical forest trees of 0.34 Pg C yr-1 (CI, 0.15–0.43). These reported changes in carbon storage are similar to those reported for Amazonian forests per unit area, providing evidence that increasing carbon storage in old-growth forests is a pan-tropical phenomenon. Indeed, combining all standardized inventory data from this study and from tropical America and Asia together yields a comparable figure of 0.49 Mg C ha-1 yr-1 (n = 156; 562 ha; CI, 0.29–0.66; mean interval, 1987–97). This indicates a carbon sink of 1.3 Pg C yr-1 (CI, 0.8–1.6) across all tropical forests during recent decades. Taxon-specific analyses of African inventory and other data suggest that widespread changes in resource availability, such as increasing atmospheric carbon dioxide concentrations, may be the cause of the increase in carbon stocks, as some theory and models predict.


New Phytologist | 2010

Drought–mortality relationships for tropical forests

Oliver L. Phillips; Geertje M.F. van der Heijden; Simon L. Lewis; Gabriela Lopez-Gonzalez; Luiz E. O. C. Aragão; Jon Lloyd; Yadvinder Malhi; Abel Monteagudo; Samuel Almeida; Esteban Álvarez Dávila; Iêda Leão do Amaral; Sandy Andelman; Ana Andrade; Luzmila Arroyo; Gerardo Aymard; Timothy R. Baker; Lilian Blanc; Damien Bonal; Atila Alves de Oliveira; Kuo-Jung Chao; Nallaret Dávila Cardozo; Lola Da Costa; Ted R. Feldpausch; Joshua B. Fisher; Nikolaos M. Fyllas; Maria Aparecida Freitas; David Galbraith; Emanuel Gloor; Niro Higuchi; Eurídice N. Honorio

*The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.


Nature | 2015

Long-term decline of the Amazon carbon sink

Roel J. W. Brienen; Oliver L. Phillips; Ted R. Feldpausch; Emanuel Gloor; Timothy R. Baker; Jon Lloyd; Gabriela Lopez-Gonzalez; Abel Monteagudo-Mendoza; Yadvinder Malhi; Simon L. Lewis; R. Vásquez Martínez; Miguel Alexiades; E. Álvarez Dávila; Patricia Alvarez-Loayza; Ana Andrade; Luiz E. O. C. Aragão; Alejandro Araujo-Murakami; E.J.M.M. Arets; Luzmila Arroyo; Olaf S. Bánki; Christopher Baraloto; Jorcely Barroso; Damien Bonal; Rene G. A. Boot; José Luís C. Camargo; Carolina V. Castilho; V. Chama; Kuo-Jung Chao; Jérôme Chave; James A. Comiskey

Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.


Global Ecology and Biogeography | 2014

Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

Edward T. A. Mitchard; Ted R. Feldpausch; Roel J. W. Brienen; Gabriela Lopez-Gonzalez; Abel Monteagudo; Timothy R. Baker; Simon L. Lewis; Jon Lloyd; Carlos A. Quesada; Manuel Gloor; Hans ter Steege; Patrick Meir; Esteban Álvarez; Alejandro Araujo-Murakami; Luiz E. O. C. Aragão; Luzmila Arroyo; Gerardo Aymard; Olaf Banki; Damien Bonal; Sandra A. Brown; Foster Brown; Carlos Cerón; Victor Chama Moscoso; Jérôme Chave; James A. Comiskey; Fernando Cornejo; Massiel Corrales Medina; Lola Da Costa; Flávia R. C. Costa; Anthony Di Fiore

Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.


Philosophical Transactions of the Royal Society B | 2013

Above-ground biomass and structure of 260 African tropical forests

Simon L. Lewis; Bonaventure Sonké; Terry Sunderland; Serge K. Begne; Gabriela Lopez-Gonzalez; M. F. van der Heijden; Oliver L. Phillips

We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes.


Nature Communications | 2014

Size and frequency of natural forest disturbances and the Amazon forest carbon balance

Fernando D. B. Espirito-Santo; Manuel Gloor; Michael Keller; Yadvinder Malhi; Sassan S. Saatchi; Bruce Walker Nelson; Rc Junior; Cleuton Pereira; Jon Lloyd; Stephen E. Frolking; Michael Palace; Yosio Edemir Shimabukuro; Duarte; Abel Monteagudo Mendoza; Gabriela Lopez-Gonzalez; Timothy R. Baker; Ted R. Feldpausch; Roel J. W. Brienen; Gregory P. Asner; Doreen S. Boyd; Oliver L. Phillips

Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and satellite remote sensing data. We find that small-scale mortality events are responsible for aboveground biomass losses of ~1.7 Pg C y−1 over the entire Amazon region. We also find that intermediate-scale disturbances account for losses of ~0.2 Pg C y−1, and that the largest-scale disturbances as a result of blow-downs only account for losses of ~0.004 Pg C y−1. Simulation of growth and mortality indicates that even when all carbon losses from intermediate and large-scale disturbances are considered, these are outweighed by the net biomass accumulation by tree growth, supporting the inference of an Amazon carbon sink.


Journal of Vegetation Science | 2007

The RAINFOR database: monitoring forest biomass and dynamics

J. Peacock; Timothy R. Baker; Simon L. Lewis; Gabriela Lopez-Gonzalez; Oliver L. Phillips

Abstract Problem: Data from over 100 permanent sample plots which have been studied for 10–20 years need a suitable system for storage which allows simple data manipulation and retrieval for analysis. Methods: A relational database linking tree records, taxonomic nomenclature and corresponding environmental data has been built in MS Access as part of the RAINFOR project. Conclusion: The database allows flexible and long-term use of a large amount of data: more than 100 tree plots across Amazonia, incorporating over 80 000 records of individual trees and over 300 000 total records of tree diameter measurements from successive censuses. The database is designed to enable linkages to existing soil, floristic or plant-trait databases. This database will be a useful tool for exploring the impact of environmental factors on forest structure and dynamics at local to continental scales, and long term changes in forest ecology. As an early example of its potential, we explore the impact of different methodological assumptions on estimates of tropical forest biomass and carbon storage.


Global Biogeochemical Cycles | 2016

Amazon forest response to repeated droughts

Ted R. Feldpausch; Oliver L. Phillips; Roel J. W. Brienen; Emanuel Gloor; Jon Lloyd; Gabriela Lopez-Gonzalez; Abel Monteagudo-Mendoza; Yadvinder Malhi; A. Alarcón; E. Álvarez Dávila; Patricia Alvarez-Loayza; Ana Andrade; Luiz E. O. C. Aragão; Luzmila Arroyo; Timothy R. Baker; Christopher Baraloto; Jorcely Barroso; Damien Bonal; Wendeson Castro; V. Chama; Jérôme Chave; Tomas F. Domingues; Sophie Fauset; Nikée Groot; E.N. Honorio Coronado; Susan G. Laurance; William F. Laurance; Simon L. Lewis; J. C. Licona; Beatriz Schwantes Marimon

The Amazon Basin has experienced more variable climate over the last decade, with a severe and widespread drought in 2005 causing large basin-wide losses of biomass. A drought of similar climatological magnitude occurred again in 2010; however, there has been no basin-wide ground-based evaluation of effects on vegetation. We examine to what extent the 2010 drought affected forest dynamics using ground-based observations of mortality and growth from an extensive forest plot network. We find that during the 2010 drought interval, forests did not gain biomass (net change: −0.43 Mg ha−1, confidence interval (CI): −1.11, 0.19, n = 97), regardless of whether forests experienced precipitation deficit anomalies. This contrasted with a long-term biomass sink during the baseline pre-2010 drought period (1998 to pre-2010) of 1.33 Mg ha−1 yr−1 (CI: 0.90, 1.74, p < 0.01). The resulting net impact of the 2010 drought (i.e., reversal of the baseline net sink) was −1.95 Mg ha−1 yr−1 (CI:−2.77, −1.18; p < 0.001). This net biomass impact was driven by an increase in biomass mortality (1.45 Mg ha−1 yr−1 CI: 0.66, 2.25, p < 0.001) and a decline in biomass productivity (−0.50 Mg ha−1 yr−1, CI:−0.78, −0.31; p < 0.001). Surprisingly, the magnitude of the losses through tree mortality was unrelated to estimated local precipitation anomalies and was independent of estimated local pre-2010 drought history. Thus, there was no evidence that pre-2010 droughts compounded the effects of the 2010 drought. We detected a systematic basin-wide impact of the 2010 drought on tree growth rates across Amazonia, which was related to the strength of the moisture deficit. This impact differed from the drought event in 2005 which did not affect productivity. Based on these ground data, live biomass in trees and corresponding estimates of live biomass in lianas and roots, we estimate that intact forests in Amazonia were carbon neutral in 2010 (−0.07 Pg C yr−1 CI:−0.42, 0.23), consistent with results from an independent analysis of airborne estimates of land-atmospheric fluxes during 2010. Relative to the long-term mean, the 2010 drought resulted in a reduction in biomass carbon uptake of 1.1 Pg C, compared to 1.6 Pg C for the 2005 event.


Journal of Ecology | 2014

Tropical forest wood production: a cross-continental comparison

Lindsay Banin; Simon L. Lewis; Gabriela Lopez-Gonzalez; Timothy R. Baker; Carlos A. Quesada; Kuo-Jung Chao; David F. R. P. Burslem; Reuben Nilus; Kamariah Abu Salim; Helen C. Keeling; Sylvester Tan; Stuart J. Davies; Abel Monteagudo Mendoza; Rodolfo Vasquez; Jon Lloyd; David A. Neill; Nigel C. A. Pitman; Oliver L. Phillips

Summary: Tropical forest above-ground wood production (AGWP) varies substantially along environmental gradients. Some evidence suggests that AGWP may vary between regions and specifically that Asian forests have particularly high AGWP. However, comparisons across biogeographic regions using standardized methods are lacking, limiting our assessment of pan-tropical variation in AGWP and potential causes. We sampled AGWP in NW Amazon (17 long-term forest plots) and N Borneo (11 plots), both with abundant year-round precipitation. Within each region, forests growing on a broad range of edaphic conditions were sampled using standardized soil and forest measurement techniques. Plot-level AGWP was 49% greater in Borneo than in Amazonia (9.73 ± 0.56 vs. 6.53 ± 0.34 Mg dry mass ha -1 a -1 , respectively; regional mean ± 1 SE). AGWP was positively associated with soil fertility (PCA axes, sum of bases and total P). After controlling for the edaphic environment, AGWP remained significantly higher in Bornean plots. Differences in AGWP were largely attributable to differing height-diameter allometry in the two regions and the abundance of large trees in Borneo. This may be explained, in part, by the greater solar radiation in Borneo compared with NW Amazonia. Trees belonging to the dominant SE Asian family, Dipterocarpaceae, gained woody biomass faster than otherwise equivalent, neighbouring non-dipterocarps, implying that the exceptional production of Bornean forests may be driven by floristic elements. This dominant SE Asian family may partition biomass differently or be more efficient at harvesting resources and in converting them to woody biomass. Synthesis. N Bornean forests have much greater AGWP rates than those in NW Amazon when soil conditions and rainfall are controlled for. Greater resource availability and the highly productive dipterocarps may, in combination, explain why Asian forests produce wood half as fast again as comparable forests in the Amazon. Our results also suggest that taxonomic groups differ in their fundamental ability to capture carbon and that different tropical regions may therefore have different carbon uptake capacities due to biogeographic history. North Bornean forests have much greater AGWP rates than those in north-western Amazon when soil conditions and rainfall are controlled for. Greater resource availability and the highly productive dipterocarps may, in combination, explain why these Asian forests produce wood half as fast again as comparable forests in the Amazon. Our results also suggest that taxonomic groups differ in their fundamental ability to capture carbon and that different tropical regions may therefore have different carbon uptake capacities due to biogeographic history.

Collaboration


Dive into the Gabriela Lopez-Gonzalez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Lloyd

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Jérôme Chave

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar

Abel Monteagudo

Missouri Botanical Garden

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge