Gabriela N. Doeswijk
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriela N. Doeswijk.
Cell Transplantation | 2012
Jamal Guenoun; Gerben A. Koning; Gabriela N. Doeswijk; Lizanne Bosman; Piotr A. Wielopolski; Gabriel P. Krestin; Monique R. Bernsen
In the current study cell labeling was performed with water-soluble gadolinium (Gd)-DTPA containing liposomes, to allow for cell tracking by MRI. Liposomes were used to assure a highly concentrated intracellular build up of Gd, aiming to overcome the relatively low MRI sensitivity of Gd (compared to T2 contrast agents). Liposomes were positively charged (cationic) to facilitate uptake by binding to anionic charges in the cell membrane of bone marrow-derived mesenchymal stem cells (MSCs). We determined the cellular Gd load by variations in labeling time (1, 4, and 24 h) and liposome concentration (125, 250, 500, 1000 μM lipid), closely monitoring effects on cell viability, proliferation rate, and differentiation ability. Labeling was both time and dose dependent. Labeling for 4 h was most efficient regarding the combination of processing time and final cellular Gd uptake. Labeling for 4 h with low-dose concentration (125 μM lipid, corresponding to 52 ± 3 μM Gd) yielded an intracellular load of 30 ± 2.5 pg Gd cell–1, without any effects on cell viability, proliferation, and cell differentiation. Gd liposomes, colabeled with fluorescent dyes, exhibited a prolonged cellular retention, with an endosomal distribution pattern. In vitro assay over 20 days demonstrated a drop in the average Gd load per cell, as a result of mitosis. However, there was no significant change in the sum of the Gd load in all daughter cells at endpoint (20 days), indicating an excellent cellular retention of Gd. MSCs labeled with Gd liposomes were imaged with MRI at both 1.5T and 3.0T, resulting in excellent visualization both in vitro and in vivo. Prolonged in vivo imaging of 500,000 Gd-labeled cells was possible for at least 2 weeks (3.0T). In conclusion, Gd-loaded cationic liposomes (125 μM lipid) are an excellent candidate to label cells, without detrimental effects on cell viability, proliferation, and differentiation, and can be visualized by MRI.
Contrast Media & Molecular Imaging | 2013
Jamal Guenoun; Alessandro Ruggiero; Gabriela N. Doeswijk; Roel C. Janssens; Gerben A. Koning; Gyula Kotek; Gabriel P. Krestin; Monique R. Bernsen
In cell therapy, noninvasive monitoring of in vivo cell fate is challenging. In this study we investigated possible differences in R₁, R₂ or R₂* relaxation rate as a measure of overall cell viability for mesenchymal stem cells labeled with Gd-liposomes (Gd-MSCs) or iron oxide nanoparticles (SPIO-MSCs). Cells were also transduced with a luciferase vector, facilitating a correlation between MRI findings and cell viability using bioluminescence imaging (BLI). Viable Gd-MSCs were clearly distinguishable from nonviable Gd-MSCs under both in vitro and in vivo conditions, clearly differing quantitatively (ΔR₁ and ΔR₂) as well as by visual appearance (hypo- or hyperintense contrast). Immediately post-injection,viable Gd-MSCs caused a substantially larger ΔR₂ and lower ΔR₁ effect compared with nonviable MSCs. With time, the ΔR₁ and ΔR₂ relaxation rate showed a good negative correlation with increasing cell number following proliferation. Upon injection, no substantial quantitative or visual differences between viable and nonviable SPIO-MSCs were detected. Moreover, nonviable SPIO-MSCs caused a persisting signal void in vivo, compromising the specificity of this contrast agent. In vivo persistence of SPIO particles was confirmed by histological staining. A large difference was found between SPIO- and Gd-labeled cells in the accuracy of MR relaxometry in assessing the cell viability status. Gd-liposomes provide a more accurate and specific assessment of cell viability than SPIO particles. Viable Gd cells can be differentiated from nonviable Gd cells even by visual interpretation. These findings clearly indicate Gd to be the favourable contrast agent in qualitative and quantitative evaluation of labeled cell fate in future cell therapy experiments.
The Journal of Nuclear Medicine | 2016
Simone U. Dalm; Julie Nonnekens; Gabriela N. Doeswijk; Erik de Blois; Dik C. van Gent; Mark Konijnenberg; Marion de Jong
Peptide receptor scintigraphy and peptide receptor radionuclide therapy using radiolabeled somatostatin receptor (SSTR) agonists are successfully used in the clinic for imaging and treatment of neuroendocrine tumors. Contrary to the paradigm that internalization and the resulting accumulation of radiotracers in cells is necessary for efficient tumor targeting, recent studies have demonstrated the superiority of radiolabeled SSTR antagonists for imaging purposes, despite little to no internalization in cells. However, studies comparing the therapeutic antitumor effects of radiolabeled SSTR agonists versus antagonists are lacking. The aim of this study was to directly compare the therapeutic effect of 177Lu-DOTA-octreotate, an SSTR agonist, and 177Lu-DOTA-JR11, an SSTR antagonist. Methods: We analyzed radiotracer uptake (both membrane-bound and internalized fractions) and the produced DNA double-strand breaks, by determining the number of p53 binding protein 1 foci, after incubating SSTR2-positive cells with 177Lu-diethylene triamine pentaacetic acid, 177Lu-DOTA-octreotate, or 177Lu-DOTA-JR11. Also, biodistribution studies were performed in tumor-xenografted mice to determine the optimal dose for therapy experiments. Afterward, in vivo therapy experiments comparing the effect of 177Lu-DOTA-octreotate and 177Lu-DOTA-JR11 were performed in this same animal model. Results: We found a 5-times-higher uptake of 177Lu-DOTA-JR11 than of 177Lu-DOTA-octreotate. The major part (88% ± 1%) of the antagonist uptake was membrane-bound, whereas 74% ± 3% of the total receptor agonist uptake was internalized. Cells treated with 177Lu-DOTA-JR11 showed 2 times more p53-binding protein 1 foci than cells treated with 177Lu-DOTA-octreotate. Biodistribution studies with 177Lu-DOTA-JR11 (0.5 μg/30 MBq) resulted in the highest tumor radiation dose of 1.8 ± 0.7 Gy/MBq, 4.4 times higher than the highest tumor radiation dose found for 177Lu-DOTA-octreotate. In vivo therapy studies with 177Lu-DOTA-octreotate and 177Lu-DOTA-JR11 resulted in a tumor growth delay time of 18 ± 5 and 26 ± 7 d, respectively. Median survival rates were 43.5, 61, and 71 d for the control group, 177Lu-DOTA-octreotate group, and the 177Lu-DOTA-JR11–treated group, respectively. Conclusion: On the basis of these results, we concluded that the use of radiolabeled SSTR antagonists such as JR11 might enhance peptide receptor scintigraphy and peptide receptor radionuclide therapy of neuroendocrine tumors and provide successful imaging and therapeutic strategies for cancer types with relatively low SSTR expression.
The Journal of Nuclear Medicine | 2017
Simone U. Dalm; Ingrid L. Bakker; Erik de Blois; Gabriela N. Doeswijk; Mark Konijnenberg; Francesca Orlandi; Donato Barbato; Mattia Tedesco; Theodosia Maina; Berthold A. Nock; Marion de Jong
Because overexpression of the gastrin-releasing peptide receptor (GRPR) has been reported on various cancer types, for example, prostate cancer and breast cancer, targeting this receptor with radioligands might have a significant impact on staging and treatment of GRPR-expressing tumors. NeoBOMB1 is a novel DOTA-coupled GRPR antagonist with high affinity for GRPR and excellent in vivo stability. The purpose of this preclinical study was to further explore the use of NeoBOMB1 for theranostic application by determining the biodistribution of 68Ga-NeoBOMB1 and 177Lu-NeoBOMB1. Methods: PC-3 tumor–xenografted BALB/c nu/nu mice were injected with either approximately 13 MBq/250 pmol 68Ga-NeoBOMB1 or a low (∼1 MBq/200 pmol) versus high (∼1 MBq/10 pmol) peptide amount of 177Lu-NeoBOMB1, after which biodistribution and imaging studies were performed. At 6 time points (15, 30, 60, 120, 240, and 360 min for 68Ga-NeoBOMB1 and 1, 4, 24, 48, 96, and 168 h for 177Lu-NeoBOMB1) postinjection tumor and organ uptake was determined. To assess receptor specificity, additional groups of animals were coinjected with an excess of unlabeled NeoBOMB1. Results of the biodistribution studies were used to determine pharmacokinetics and dosimetry. Furthermore, PET/CT and SPECT/MRI were performed. Results: Injection of approximately 250 pmol 68Ga-NeoBOMB1 resulted in a tumor and pancreas uptake of 12.4 ± 2.3 and 22.7 ± 3.3 percentage injected dose per gram (%ID/g) of tissue, respectively, at 120 min after injection. 177Lu-NeoBOMB1 biodistribution studies revealed a higher tumor uptake (17.9 ± 3.3 vs. 11.6 ± 1.3 %ID/g of tissue at 240 min after injection) and a lower pancreatic uptake (19.8 ± 6.9 vs. 105 ± 13 %ID/g of tissue at 240 min after injection) with the higher peptide amount injected, leading to a significant increase in the absorbed dose to the tumor versus the pancreas (200 pmol, 570 vs. 265 mGy/MBq; 10 pmol, 435 vs. 1393 mGy/MBq). Using these data to predict patient dosimetry, we found a kidney, pancreas, and liver exposure of 0.10, 0.65, and 0.06 mGy/MBq, respectively. Imaging studies resulted in good visualization of the tumor with both 68Ga-NeoBOMB1 and 177Lu-NeoBOMB1. Conclusion: Our findings indicate that 68Ga- or 177Lu-labeled NeoBOMB1 is a promising radiotracer with excellent tumor uptake and favorable pharmacokinetics for imaging and therapy of GRPR-expressing tumors.
Contrast Media & Molecular Imaging | 2013
Alessandro Ruggiero; Jamal Guenoun; Henk Smit; Gabriela N. Doeswijk; Stefan Klein; Gabriel P. Krestin; Gyula Kotek; Monique R. Bernsen
In various stem cell therapy approaches poor cell survival has been recognized as an important factor limiting therapeutic efficacy. Therefore noninvasive monitoring of cell fate is warranted for developing clinically effective stem cell therapy. In this study we investigated the use of voxel-based R₂ mapping as a tool to monitor the fate of iron oxide-labeled cells in the myocardium. Mesenchymal stem cells were transduced with the luciferase gene, labeled with ferumoxide particles and injected in the myocardium of healthy rats. Cell fate was monitored over a period of 8 weeks by bioluminescence and quantitative magnetic resonance imaging. Bioluminescence signal increased during the first week followed by a steep decrease to undetectable levels during the second week. MR imaging showed a sharp increase in R₂ values shortly after injection at the injection site, followed by a very gradual decrease of R₂ over a period of 8 weeks. No difference in the appearances on R₂-weighted images was observed between living and dead cells over the entire time period studied. No significant correlation between the bioluminescence optical data and R₂ values was observed and quantitative R₂ mapping appeared not suitable for the in vivo assessment of stem cell. These results do not follow previous in vitro reports where it was proposed that living cells may be distinguished from dead cells on the basis of the R₂ relaxivities (intracellular and extracellular iron oxides). Cell proliferation, cell migration, cell death, extracellular superparamagnetic iron oxide dispersion and aggregation exhibit different relaxivities. In vivo these processes happen simultaneously, making quantification very complex, if not impossible.
PLOS ONE | 2015
Lucia E. Duinhouwer; Bernard J. M. van Rossum; Sandra T. van Tiel; Ramon M. van der Werf; Gabriela N. Doeswijk; Joost C. Haeck; Elwin Rombouts; Mariëtte N.D. ter Borg; Gyula Kotek; Eric Braakman; Jan J. Cornelissen; Monique R. Bernsen
Impaired homing and delayed recovery upon hematopoietic stem cell transplantation (HSCT) with hematopoietic stem cells (HSC) derived from umbilical cord blood (UCB) is a major problem. Tracking transplanted cells in vivo will be helpful to detect impaired homing at an early stage and allows early interventions to improve engraftment and outcome after transplantation. In this study, we show sufficient intracellular labeling of UCB-derived CD34+ cells, with 19F-containing PLGA nanoparticles which were detectable with both flow cytometry and magnetic resonance spectroscopy (MRS). In addition, labeled CD34+ cells maintain their capacity to proliferate and differentiate, which is pivotal for successful engraftment after transplantation in vivo. These results set the stage for in vivo tracking experiments, through which the homing efficiency of transplanted cells can be studied.
Journal of Magnetic Resonance Imaging | 2014
Henk Smit; Ruben Pellicer Guridi; Jamal Guenoun; Dirk H. J. Poot; Gabriela N. Doeswijk; Matteo Milanesi; Monique R. Bernsen; Gabriel P. Krestin; Stefan Klein; Gyula Kotek
To evaluate the reproducibility and sensitivity of the modified CINE inversion recovery (mCINE‐IR) acquisition on rats for measuring the myocardial T1 at 7 Tesla.
The Journal of Nuclear Medicine | 2017
Simone U. Dalm; Joost C. Haeck; Gabriela N. Doeswijk; Erik de Blois; Marion de Jong; Carolien H.M. van Deurzen
Recent studies have shown enhanced tumor targeting by novel somatostatin receptor (SSTR) antagonists compared with clinically widely used agonists. However, these results have been obtained mostly in neuroendocrine tumors, and only limited data are available for cancer types with lower SSTR expression, including breast cancer (BC). To date, two studies have reported higher binding of the antagonist than the agonist in BC, but in both studies only a limited number of cases were evaluated. In this preclinical study, we further investigated whether the application of an SSTR antagonist can improve SSTR-mediated BC imaging in a large panel of BC specimens. We also generated an in vivo BC mouse model and performed SPECT/MRI and biodistribution studies. Methods: Binding of 111In-DOTA-Tyr3-octreotate (SSTR agonist) and 111In-DOTA-JR11 (SSTR antagonist) to 40 human BC specimens was compared using in vitro autoradiography. SSTR2 immunostaining was performed to confirm SSTR2 expression of the tumor cells. Furthermore, binding of the radiolabeled SSTR agonist and antagonist was analyzed in tissue material from 6 patient-derived xenografts. One patient-derived xenograft, the estrogen receptor–positive model T126, was chosen to generate in vivo mouse models containing orthotopic breast tumors for in vivo SPECT/MRI and biodistribution studies after injection with 177Lu-DOTA-Tyr3-octreotate or 177Lu-DOTA-JR11. Results: 111In-DOTA-JR11 binding to human BC tissue was significantly higher than 111In-DOTA-Tyr3-octreotate binding (P < 0.001). The median ratio of antagonist binding versus agonist binding was 3.39 (interquartile range, 2–5). SSTR2 immunostaining confirmed SSTR2 expression on the tumor cells. SPECT/MRI of the mouse model found better tumor visualization with the antagonist. This result was in line with the significantly higher tumor uptake of the radiolabeled antagonist than of the agonist as measured in biodistribution studies 285 min after radiotracer injection (percentage injected dose per gram of tissue: 1.92 ± 0.43 vs. 0.90 ± 0.17; P = 0.002). Conclusion: SSTR antagonists are promising candidates for BC imaging.
Contrast Media & Molecular Imaging | 2016
Jamal Guenoun; Gabriela N. Doeswijk; Gabriel P. Krestin; Monique R. Bernsen
Cationic liposomes carrying high [Gd] can be used as efficient cell-labeling agents. In a compartmentalized state, Gd can cause signal loss (relaxivity quenching). The contributions of liposomal [Gd], size and compartmentalization state to relaxivity quenching were assessed. The dependency of signal intensity (SI) on intraliposomal [Gd] was assessed comparing three different [Gd] (0.3, 0.6 and 1.0 M Gd) in both small (80 nm) and large (120 nm) cationic liposomes. In addition, five compartmentalization states were compared: free Gd, intact Gd liposomes, ruptured Gd liposomes, Gd liposomes in intact cells and Gd liposomes in ruptured cells (simulating cell death). Gd also causes R2 effects, which is often overlooked. Therefore, both R1 and R2 relaxation rates of a dilution range were measured by T1 and T2 mapping on a 7 T clinical scanner. Less is more. As the unidirectional water efflux rate (outbound across the liposome membrane, κle) is proportional to the surface:volume ratio, smaller liposomes yielded a consistently higher R1 than larger liposomes. For equal voxel [Gd] less concentrated liposomes (0.3 M Gd) yielded higher R1/R2 ratio because of the higher extraliposomal water fraction (vl ). Gd exhibits a dualistic behavior: from hypointensity to hyperintensity to hypointensity, with decreasing [Gd]. Regarding compartmentalization, fewer membrane barriers means a higher R1 /R2 ratio. Gd liposomes exhibit a versatile contrast behavior, dependent on the compartmentalization state, liposomal size, intraliposomal [Gd] and liposome number. Both R1 and R2 effects contribute to this. The versatility allows one to tailor the optimal liposomal formulation to desired goals in cell labeling and tracking.
The Journal of Nuclear Medicine | 2016
Simone U. Dalm; Ingrid L. Bakker; Erik de Blois; Gabriela N. Doeswijk; Mark Konijnenberg; Francesca Orlandi; Donato Barbato; Mattia Tedesco; Theodosia Maina; Berthold A. Nock; Marion de Jong