Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriele Zoppoli is active.

Publication


Featured researches published by Gabriele Zoppoli.


PLOS ONE | 2009

Catastrophic NAD+ Depletion in Activated T Lymphocytes through Nampt Inhibition Reduces Demyelination and Disability in EAE

Santina Bruzzone; Floriana Fruscione; Sara Morando; Tiziana Ferrando; Alessandro Poggi; Anna Garuti; Agustina D'Urso; Martina Selmo; Federica Benvenuto; Michele Cea; Gabriele Zoppoli; Eva Moran; Debora Soncini; Alberto Ballestrero; Bernard Sordat; Franco Patrone; Raul Mostoslavsky; Antonio Uccelli; Alessio Nencioni

Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD+ synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD+ depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-γ and TNF-α production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD+-degrading enzyme poly-(ADP-ribose)-polymerase (PARP) by activated T cells enhances their susceptibility to NAD+ depletion. In addition, we relate defective IFN-γ and TNF-α production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors) could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders.


Journal of Biological Chemistry | 2012

The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses

Inga Bauer; Alessia Grozio; Denise Lasigliè; Giovanna Basile; Laura Sturla; Mirko Magnone; Giovanna Sociali; Debora Soncini; Irene Caffa; Alessandro Poggi; Gabriele Zoppoli; Michele Cea; Georg Feldmann; Raul Mostoslavsky; Alberto Ballestrero; Franco Patrone; Santina Bruzzone; Alessio Nencioni

Background: Cytokine secretion has unwanted consequences in malignant and in inflammatory disorders. The deacetylase SIRT6 has pro-inflammatory activity, but the underlying mechanisms and its biological significance remain unclear. Results: SIRT6 enhances cytokine secretion and cell motility in pancreatic cancer cells by activating Ca2+ signaling. Conclusion: SIRT6 promotes Ca2+-dependent responses. Significance: SIRT6 inhibitors may help combat malignant and inflammatory disorders. Cytokine secretion by cancer cells contributes to cancer-induced symptoms and angiogenesis. Studies show that the sirtuin SIRT6 promotes inflammation by enhancing TNF expression. Here, we aimed to determine whether SIRT6 is involved in conferring an inflammatory phenotype to cancer cells and to define the mechanisms linking SIRT6 to inflammation. We show that SIRT6 enhances the expression of pro-inflammatory cyto-/chemokines, such as IL8 and TNF, and promotes cell migration in pancreatic cancer cells by enhancing Ca2+ responses. Via its enzymatic activity, SIRT6 increases the intracellular levels of ADP-ribose, an activator of the Ca2+ channel TRPM2. In turn, TRPM2 and Ca2+ are shown to be involved in SIRT6-induced TNF and IL8 expression. SIRT6 increases the nuclear levels of the Ca2+-dependent transcription factor, nuclear factor of activated T cells (NFAT), and cyclosporin A, a calcineurin inhibitor that reduces NFAT activity, reduces TNF and IL8 expression in SIRT6-overexpressing cells. These results implicate a role for SIRT6 in the synthesis of Ca2+-mobilizing second messengers, in the regulation of Ca2+-dependent transcription factors, and in the expression of pro-inflammatory, pro-angiogenic, and chemotactic cytokines. SIRT6 inhibition may help combat cancer-induced inflammation, angiogenesis, and metastasis.


Journal of Clinical Oncology | 2016

Genomic Characterization of Primary Invasive Lobular Breast Cancer

Christine Desmedt; Gabriele Zoppoli; Gunes Gundem; Giancarlo Pruneri; Denis Larsimont; Marco Fornili; Debora Fumagalli; David Norman Brown; Françoise Rothé; Delphine Vincent; Naima Kheddoumi; Ghizlane Rouas; Samira Majjaj; Sylvain Brohée; Peter Van Loo; Patrick Maisonneuve; Roberto Salgado; Thomas Van Brussel; Diether Lambrechts; Ron Bose; Otto Metzger; Christine Galant; François Bertucci; Martine Piccart-Gebhart; Giuseppe Viale; Elia Biganzoli; Peter J. Campbell; Christos Sotiriou

PURPOSE Invasive lobular breast cancer (ILBC) is the second most common histologic subtype after invasive ductal breast cancer (IDBC). Despite clinical and pathologic differences, ILBC is still treated as IDBC. We aimed to identify genomic alterations in ILBC with potential clinical implications. METHODS From an initial 630 ILBC primary tumors, we interrogated oncogenic substitutions and insertions and deletions of 360 cancer genes and genome-wide copy number aberrations in 413 and 170 ILBC samples, respectively, and correlated those findings with clinicopathologic and outcome features. RESULTS Besides the high mutation frequency of CDH1 in 65% of tumors, alterations in one of the three key genes of the phosphatidylinositol 3-kinase pathway, PIK3CA, PTEN, and AKT1, were present in more than one-half of the cases. HER2 and HER3 were mutated in 5.1% and 3.6% of the tumors, with most of these mutations having a proven role in activating the human epidermal growth factor receptor/ERBB pathway. Mutations in FOXA1 and ESR1 copy number gains were detected in 9% and 25% of the samples. All these alterations were more frequent in ILBC than in IDBC. The histologic diversity of ILBC was associated with specific alterations, such as enrichment for HER2 mutations in the mixed, nonclassic, and ESR1 gains in the solid subtype. Survival analyses revealed that chromosome 1q and 11p gains showed independent prognostic value in ILBC and that HER2 and AKT1 mutations were associated with increased risk of early relapse. CONCLUSION This study demonstrates that we can now begin to individualize the treatment of ILBC, with HER2, HER3, and AKT1 mutations representing high-prevalence therapeutic targets and FOXA1 mutations and ESR1 gains deserving urgent dedicated clinical investigation, especially in the context of endocrine treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Putative DNA/RNA helicase Schlafen-11 (SLFN11) sensitizes cancer cells to DNA-damaging agents

Gabriele Zoppoli; Marie Regairaz; Elisabetta Leo; William C. Reinhold; Sudhir Varma; Alberto Ballestrero; James H. Doroshow; Yves Pommier

DNA-damaging agents (DDAs) constitute the backbone of treatment for most human tumors. Here we used the National Cancer Institute Antitumor Cell Line Panel (the NCI-60) to identify predictors of cancer cell response to topoisomerase I (Top1) inhibitors, a widely used class of DDAs. We assessed the NCI-60 transcriptome using Affymetrix Human Exon 1.0 ST microarrays and correlated the in vitro activity of four Top1 inhibitors with gene expression in the 60 cell lines. A single gene, Schlafen-11 (SLFN11), showed an extremely significant positive correlation with the response not only to Top1 inhibitors, but also to Top2 inhibitors, alkylating agents, and DNA synthesis inhibitors. Using cells with endogenously high and low SLFN11 expression and siRNA-mediated silencing, we show that SLFN11 is causative in determining cell death and cell cycle arrest in response to DDAs in cancer cells from different tissues of origin. We next analyzed SLFN11 expression in ovarian and colorectal cancers and normal corresponding tissues from The Cancer Genome Atlas database and observed that SLFN11 has a wide expression range. We also observed that high SLFN11 expression independently predicts overall survival in a group of ovarian cancer patients treated with cisplatin-containing regimens. We conclude that SLFN11 expression is causally associated with the activity of DDAs in cancer cells, has a broad expression range in colon and ovarian adenocarcinomas, and may behave as a biomarker for prediction of response to DDAs in the clinical setting.


Journal of Pharmacology and Experimental Therapeutics | 2009

Cellular Inhibition of Checkpoint Kinase 2 (Chk2) and Potentiation of Camptothecins and Radiation by the Novel Chk2 Inhibitor PV1019 [7-Nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide]

Andrew Jobson; George T. Lountos; Philip L. Lorenzi; Jenny Llamas; John Connelly; David Cerna; Joseph E. Tropea; Akikazu Onda; Gabriele Zoppoli; G. Zhang; Natasha J. Caplen; John H. Cardellina; Stephen S. Yoo; Anne Monks; Christopher Self; David S. Waugh; Robert H. Shoemaker; Yves Pommier

Chk2 is a checkpoint kinase involved in the ataxia telangiectasia mutated pathway, which is activated by genomic instability and DNA damage, leading to either cell death (apoptosis) or cell cycle arrest. Chk2 provides an unexplored therapeutic target against cancer cells. We recently reported 4,4′-diacetyldiphenylurea-bis(guanylhydrazone) (NSC 109555) as a novel chemotype Chk2 inhibitor. We have now synthesized a derivative of NSC 109555, PV1019 (NSC 744039) [7-nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide], which is a selective submicromolar inhibitor of Chk2 in vitro. The cocrystal structure of PV1019 bound in the ATP binding pocket of Chk2 confirmed enzymatic/biochemical observations that PV1019 acts as a competitive inhibitor of Chk2 with respect to ATP. PV1019 was found to inhibit Chk2 in cells. It inhibits Chk2 autophosphorylation (which represents the cellular kinase activation of Chk2), Cdc25C phosphorylation, and HDMX degradation in response to DNA damage. PV1019 also protects normal mouse thymocytes against ionizing radiation-induced apoptosis, and it shows synergistic antiproliferative activity with topotecan, camptothecin, and radiation in human tumor cell lines. We also show that PV1019 and Chk2 small interfering RNAs can exert antiproliferative activity themselves in the cancer cells with high Chk2 expression in the NCI-60 screen. These data indicate that PV1019 is a potent and selective inhibitor of Chk2 with chemotherapeutic and radiosensitization potential.


Journal of Immunology | 2011

Impaired Response to Influenza Vaccine Associated with Persistent Memory B Cell Depletion in Non-Hodgkin’s Lymphoma Patients Treated with Rituximab-Containing Regimens

Davide Bedognetti; Gabriele Zoppoli; Carlotta Massucco; Elisa Zanardi; Simonetta Zupo; Andrea Bruzzone; Mario Roberto Sertoli; Enrico Balleari; O. Racchi; Marco Messina; Graziano Caltabiano; Giancarlo Icardi; Paolo Durando; Francesco M. Marincola; Francesco Boccardo; Manlio Ferrarini; Filippo Ansaldi; Andrea De Maria

Influenza vaccination is generally recommended for non-Hodgkin’s lymphoma (NHL) patients, but no data are available about the activity of this vaccine after treatment with rituximab-containing regimens. We evaluated the humoral response to the trivalent seasonal influenza vaccine in a group of NHL patients in complete remission for ≥6 mo (median, 29 mo) after treatment with rituximab-containing regimens (n = 31) compared with age-matched healthy subjects (n = 34). B cell populations and incidence of influenza-like illness were also evaluated. For each viral strain, the response was significantly lower in patients compared with controls and was particularly poor in patients treated with fludarabine-based regimens. In the patient group, the response to vaccination did not fulfill the immunogenic criteria based on the European Committee for Medicinal Products for Human Use requirements. Among the patients, CD27+ memory B cells were significantly reduced, and their reduction correlated with serum IgM levels and vaccine response. Episodes of influenza-like illness were recorded only in patients. These results showed that NHL patients treated with rituximab-containing regimens have persisting perturbations of B cell compartments and Ig synthesis and may be at particular risk for infection, even in long-standing complete remission.


PLOS ONE | 2011

Synergistic Interactions between HDAC and Sirtuin Inhibitors in Human Leukemia Cells

Michele Cea; Debora Soncini; Floriana Fruscione; Lizzia Raffaghello; Anna Garuti; Laura Emionite; Eva Moran; Mirko Magnone; Gabriele Zoppoli; Daniele Reverberi; Irene Caffa; Annalisa Salis; Antonia Cagnetta; Micaela Bergamaschi; Salvatore Casciaro; Ivana Pierri; Gianluca Damonte; Filippo Ansaldi; Marco Gobbi; Vito Pistoia; Alberto Ballestrero; Franco Patrone; Santina Bruzzone; Alessio Nencioni

Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However, while classical, NAD+-independent HDACs are an established therapeutic target, the relevance of NAD+-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527) and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.


Experimental Hematology | 2010

Potent synergistic interaction between the Nampt inhibitor APO866 and the apoptosis activator TRAIL in human leukemia cells

Gabriele Zoppoli; Michele Cea; Debora Soncini; Floriana Fruscione; Justine Rudner; Eva Moran; Irene Caffa; Davide Bedognetti; Giulia Motta; Riccardo Ghio; Fabio Ferrando; Alberto Ballestrero; Silvio Parodi; Claus Belka; Franco Patrone; Santina Bruzzone; Alessio Nencioni

OBJECTIVE The nicotinamide phosphoribosyltransferase (Nampt) inhibitor APO866 depletes intracellular nicotinamide adenine dinucleotide (NAD(+)) and shows promising anticancer activity in preclinical studies. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) binds to plasma membrane receptors DR4 and DR5 and induces apoptosis via caspase-8 and -10. Here we have explored the interaction between APO866 and TRAIL in leukemia cell lines and in primary B-cell chronic lymphocytic leukemia cells. MATERIALS AND METHODS Cells were treated with APO866, TRAIL, or their combination. Viability and mitochondrial transmembrane potential (ΔΨ(m)) were determined by cell staining with propidium iodide and tetramethylrhodamine ethyl ester, respectively, and flow cytometry. Nampt and γ-tubulin levels, as well as caspase-3 cleavage were detected by immunoblotting. DR4 and DR5 expression were assessed by immunostaining and flow cytometry. Caspases were inhibited with zVAD-FMK and zDEVD-FMK; autophagy with 3-methyladenine, LY294002, and wortmannin. Intracellular NAD(+) and adenosine triphosphate (ATP) were measured by cycling assays and high-performance liquid chromatography (HPLC), respectively. RESULTS APO866 induced NAD(+) depletion, ΔΨ(m) dissipation, and ATP shortage in leukemia cells, thereby leading to autophagic cell death. TRAIL induced caspase-dependent apoptosis. TRAIL addition to APO866 synergistically increased its activity in leukemia cells by enhancing NAD(+) depletion, ΔΨ(m) dissipation, and ATP shortage. No DR5 upregulation at the cell surface in response to APO866 was observed. Remarkably, in healthy leukocytes APO866 and TRAIL were poorly active and failed to show any cooperation. CONCLUSIONS Activation of the extrinsic apoptotic cascade with TRAIL selectively amplifies the sequelae of Nampt inhibition in leukemia cells, and appears as a promising strategy to enhance APO866 activity in hematological malignancies.


The Journal of Pathology | 2015

Uncovering the genomic heterogeneity of multifocal breast cancer

Christine Desmedt; Debora Fumagalli; Elisabetta Pietri; Gabriele Zoppoli; David Norman Brown; Serena Nik-Zainal; Gunes Gundem; Françoise Rothé; Samira Majjaj; Anna Garuti; Enrico Carminati; Sherene Loi; Thomas Van Brussel; Bram Boeckx; Marion Maetens; Laura Mudie; Delphine Vincent; Naima Kheddoumi; Luigi Serra; Ilaria Massa; Alberto Ballestrero; Dino Amadori; Roberto Salgado; Alexandre de Wind; Diether Lambrechts; Martine Piccart; Denis Larsimont; Peter J. Campbell; Christos Sotiriou

Multifocal breast cancer (MFBC), defined as multiple synchronous unilateral lesions of invasive breast cancer, is relatively frequent and has been associated with more aggressive features than unifocal cancer. Here, we aimed to investigate the genomic heterogeneity between MFBC lesions sharing similar histopathological parameters. Characterization of different lesions from 36 patients with ductal MFBC involved the identification of non‐silent coding mutations in 360 protein‐coding genes (171 tumour and 36 matched normal samples). We selected only patients with lesions presenting the same grade, ER, and HER2 status. Mutations were classified as ‘oncogenic’ in the case of recurrent substitutions reported in COSMIC or truncating mutations affecting tumour suppressor genes. All mutations identified in a given patient were further interrogated in all samples from that patient through deep resequencing using an orthogonal platform. Whole‐genome rearrangement screen was further conducted in 8/36 patients. Twenty‐four patients (67%) had substitutions/indels shared by all their lesions, of which 11 carried the same mutations in all lesions, and 13 had lesions with both common and private mutations. Three‐quarters of those 24 patients shared oncogenic variants. The remaining 12 patients (33%) did not share any substitution/indels, with inter‐lesion heterogeneity observed for oncogenic mutation(s) in genes such as PIK3CA, TP53, GATA3, and PTEN. Genomically heterogeneous lesions tended to be further apart in the mammary gland than homogeneous lesions. Genome‐wide analyses of a limited number of patients identified a common somatic background in all studied MFBCs, including those with no mutation in common between the lesions. To conclude, as the number of molecular targeted therapies increases and trials driven by genomic screening are ongoing, our findings highlight the presence of genomic inter‐lesion heterogeneity in one‐third, despite similar pathological features. This implies that deeper molecular characterization of all MFBC lesions is warranted for the adequate management of those cancers.


Cell Cycle | 2008

A novel Bim-BH3-derived Bcl-XL inhibitor: biochemical characterization, in vitro, in vivo and ex-vivo anti-leukemic activity.

Raffaella c Ponassi; Barbara Biasotti; Valeria Tomati; Silvia Bruno; Alessandro Poggi; Davide Malacarne; Guido Cimoli; Annalisa Salis; Sarah Pozzi; Maurizio Miglino; Gianluca Damonte; Pietro Cozzini; Francesca Spyrakis; Barbara Campanini; Luca Bagnasco; Nicoletta Castagnino; Lorenzo Tortolina; Anna Mumot; Francesco Frassoni; Antonio Daga; Michele Cilli; Federica Piccardi; Ilaria Monfardini; Miriam Perugini; Gabriele Zoppoli; Cristina D'Arrigo; Raffaele Pesenti; Silvio Parodi

BH3-only members of the Bcl-2 family exert a fundamental role in apoptosis induction. This work focuses on the development of a novel peptidic molecule based on the BH3 domain of Bim. The antiapoptotic molecule Bcl-XL, involved in cancer development/progression and tumour resistance to cytotoxic drugs, is a target for Bim. According to a rational study of the structural interactions between wt Bim-BH3 and Bcl-XL, we replaced specific residues of Bim-BH3 with natural and non-natural aminoacids and added an internalizing sequence, thus increasing dramatically the inhibitory activity of our modified Bim-BH3 peptide, called 072RB. Confocal microscopy and flow cytometry demonstrated cellular uptake and internalization of 072RB, followed by co-localization with mitochondria. Multiparameter flow cytometry demonstrated that the 072RB dose-dependent growth inhibition of leukaemia cell lines was due to apoptotic cell death. No effect was observed when cells were treated with the internalizing vector alone or a mutated control peptide (single aminoacid substitution L94A). Ex-vivo derived leukemic cells from acute myeloid leukaemia (AML) patients underwent cell death when cultured in vitro in the presence of 072RB. Conversely, no significant cytotoxic effect was observed when 072RB was administered to cultures of peripheral blood mononuclear cells, either resting or PHA-stimulated, and bone marrow cells of normal donors. Xenografts of human AML cells in NOD/SCID mice displayed a significant delay of leukemic cell growth upon treatment with 072RB administered intravenously (15 mg/Kg three times, 48 hours after tumour cell injection). Altogether, these observations support the therapeutic potentials of this novel BH3 mimetic.

Collaboration


Dive into the Gabriele Zoppoli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yves Pommier

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Norman Brown

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge