Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alessio Nencioni is active.

Publication


Featured researches published by Alessio Nencioni.


PLOS ONE | 2009

Catastrophic NAD+ Depletion in Activated T Lymphocytes through Nampt Inhibition Reduces Demyelination and Disability in EAE

Santina Bruzzone; Floriana Fruscione; Sara Morando; Tiziana Ferrando; Alessandro Poggi; Anna Garuti; Agustina D'Urso; Martina Selmo; Federica Benvenuto; Michele Cea; Gabriele Zoppoli; Eva Moran; Debora Soncini; Alberto Ballestrero; Bernard Sordat; Franco Patrone; Raul Mostoslavsky; Antonio Uccelli; Alessio Nencioni

Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD+ synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD+ depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-γ and TNF-α production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD+-degrading enzyme poly-(ADP-ribose)-polymerase (PARP) by activated T cells enhances their susceptibility to NAD+ depletion. In addition, we relate defective IFN-γ and TNF-α production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors) could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders.


Clinical Cancer Research | 2007

Histone Deacetylase Inhibitors Affect Dendritic Cell Differentiation and Immunogenicity

Alessio Nencioni; Julia Beck; Daniela Werth; Frank Grünebach; Franco Patrone; Alberto Ballestrero; Peter Brossart

Purpose: Histone deacetylases (HDAC) modulate gene transcription and chromatin assembly by modifying histones at the posttranscriptional level. HDAC inhibitors have promising antitumor activity and are presently explored in clinical studies. Cumulating evidence in animal models of immune disorders also suggests immunosuppressive properties for these small molecules, although the underlying mechanisms remain at present poorly understood. Here, we have evaluated the effects of two HDAC inhibitors currently in clinical use, sodium valproate and MS-275, on human monocyte-derived DCs. Experimental Design: DCs were generated from monocytes through incubation with granulocyte macrophage colony-stimulating factor and interleukin-4. DC maturation was induced by addition of polyinosinic-polycytidylic acid. DC phenotype, immunostimulatory capacity, cytokine secretion, and migratory capacity were determined by flow cytometry, mixed leukocyte reaction, ELISA, and Transwell migration assay, respectively. Nuclear translocation of RelB, IFN regulatory factor (IRF)-3, and IRF-8 were determined by immunoblotting. Results: HDAC inhibition skews DC differentiation by preventing the acquisition of the DC hallmark CD1a and by affecting the expression of costimulation and adhesion molecules. In addition, macrophage inflammatory protein-3β/chemokine, motif CC, ligand 19–induced migration, immunostimulatory capacity, and cytokine secretion by DCs are also profoundly impaired. The observed defects in DC function on exposure to HDAC inhibitors seem to reflect the obstruction of signaling through nuclear factor-κB, IRF-3, and IRF-8. Conclusions: HDAC inhibitors exhibit strong immunomodulatory properties in human DCs. Our results support the evaluation of HDAC inhibitors in inflammatory and autoimmune disorders.


Journal of Biological Chemistry | 2012

The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses

Inga Bauer; Alessia Grozio; Denise Lasigliè; Giovanna Basile; Laura Sturla; Mirko Magnone; Giovanna Sociali; Debora Soncini; Irene Caffa; Alessandro Poggi; Gabriele Zoppoli; Michele Cea; Georg Feldmann; Raul Mostoslavsky; Alberto Ballestrero; Franco Patrone; Santina Bruzzone; Alessio Nencioni

Background: Cytokine secretion has unwanted consequences in malignant and in inflammatory disorders. The deacetylase SIRT6 has pro-inflammatory activity, but the underlying mechanisms and its biological significance remain unclear. Results: SIRT6 enhances cytokine secretion and cell motility in pancreatic cancer cells by activating Ca2+ signaling. Conclusion: SIRT6 promotes Ca2+-dependent responses. Significance: SIRT6 inhibitors may help combat malignant and inflammatory disorders. Cytokine secretion by cancer cells contributes to cancer-induced symptoms and angiogenesis. Studies show that the sirtuin SIRT6 promotes inflammation by enhancing TNF expression. Here, we aimed to determine whether SIRT6 is involved in conferring an inflammatory phenotype to cancer cells and to define the mechanisms linking SIRT6 to inflammation. We show that SIRT6 enhances the expression of pro-inflammatory cyto-/chemokines, such as IL8 and TNF, and promotes cell migration in pancreatic cancer cells by enhancing Ca2+ responses. Via its enzymatic activity, SIRT6 increases the intracellular levels of ADP-ribose, an activator of the Ca2+ channel TRPM2. In turn, TRPM2 and Ca2+ are shown to be involved in SIRT6-induced TNF and IL8 expression. SIRT6 increases the nuclear levels of the Ca2+-dependent transcription factor, nuclear factor of activated T cells (NFAT), and cyclosporin A, a calcineurin inhibitor that reduces NFAT activity, reduces TNF and IL8 expression in SIRT6-overexpressing cells. These results implicate a role for SIRT6 in the synthesis of Ca2+-mobilizing second messengers, in the regulation of Ca2+-dependent transcription factors, and in the expression of pro-inflammatory, pro-angiogenic, and chemotactic cytokines. SIRT6 inhibition may help combat cancer-induced inflammation, angiogenesis, and metastasis.


Blood | 2012

Targeting NAD salvage pathway induces autophagy in multiple myeloma cells via mTORC1 and extracellular signal-regulated kinase (ERK1/2) inhibition

Michele Cea; Antonia Cagnetta; Mariateresa Fulciniti; Yu-Tzu Tai; Teru Hideshima; Dharminder Chauhan; Aldo M. Roccaro; Antonio Sacco; Teresa Calimeri; Francesca Cottini; Jana Jakubikova; Sun Young Kong; Franco Patrone; Alessio Nencioni; Marco Gobbi; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

Malignant cells have a higher nicotinamide adenine dinucleotide (NAD(+)) turnover rate than normal cells, making this biosynthetic pathway an attractive target for cancer treatment. Here we investigated the biologic role of a rate-limiting enzyme involved in NAD(+) synthesis, Nampt, in multiple myeloma (MM). Nampt-specific chemical inhibitor FK866 triggered cytotoxicity in MM cell lines and patient MM cells, but not normal donor as well as MM patients PBMCs. Importantly, FK866 in a dose-dependent fashion triggered cytotoxicity in MM cells resistant to conventional and novel anti-MM therapies and overcomes the protective effects of cytokines (IL-6, IGF-1) and bone marrow stromal cells. Nampt knockdown by RNAi confirmed its pivotal role in maintenance of both MM cell viability and intracellular NAD(+) stores. Interestingly, cytotoxicity of FK866 triggered autophagy, but not apoptosis. A transcriptional-dependent (TFEB) and independent (PI3K/mTORC1) activation of autophagy mediated FK866 MM cytotoxicity. Finally, FK866 demonstrated significant anti-MM activity in a xenograft-murine MM model, associated with down-regulation of ERK1/2 phosphorylation and proteolytic cleavage of LC3 in tumor cells. Our data therefore define a key role of Nampt in MM biology, providing the basis for a novel targeted therapeutic approach.


Thrombosis and Haemostasis | 2013

Pathophysiological role of neutrophils in acute myocardial infarction

Federico Carbone; Alessio Nencioni; François Mach; Nicolas Vuilleumier; Fabrizio Montecucco

The pathogenesis of acute myocardial infarction is known to be mediated by systemic, intraplaque and myocardial inflammatory processes. Among different immune cell subsets, compelling evidence now indicates a pivotal role for neutrophils in acute coronary syndromes. Neutrophils infiltrate coronary plaques and the infarcted myocardium and mediate tissue damage by releasing matrix-degrading enzymes and reactive oxygen species. In addition, neutrophils are also involved in post-infarction adverse cardiac remodelling and neointima formation after angioplasty. The promising results obtained in preclinical modelswith pharmacological approaches interfering with neutrophil recruitment or function have confirmed the pathophysiological relevance of these immune cells in acute coronary syndromes and prompted further studies of these therapeutic interventions. This narrative review will provide an update on the role of neutrophils in acute myocardial infarction and on the pharmacological means that were devised to prevent neutrophil-mediated tissue damage and to reduce post-ischaemic outcomes.


European Journal of Immunology | 2006

Proteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cells.

Alessio Nencioni; Anna Garuti; Karin von Schwarzenberg; Gabriella Cirmena; Giovanna Dal Bello; Ilaria Rocco; Eleonora Barbieri; Peter Brossart; Franco Patrone; Alberto Ballestrero

Proteasome inhibitors possess potent antitumor activity against a broad spectrum of human malignancies. However, the effects of these compounds on the immune system still have to be clearly determined. In the present study, we have investigated the effects of proteasome inhibitors on dendritic cells (DC), antigen‐presenting cells playing a key role in the initiation of immune responses. Exposure to the proteasome inhibitors bortezomib, MG132 or epoxomicin was found to promote apoptosis of human monocyte‐derived DC and to reduce the yield of viable DC when given to monocytes early during differentiation to DC. DC apoptosis via proteasome inhibition was accompanied by mitochondria disruption and subsequent activation of the caspase cascade. Up‐regulation and intracellular redistribution of Bcl‐2‐associated X protein (Bax), a pro‐apoptotic Bcl‐2 family protein, were observed in DC treated with these compounds and represent a suitable mechanism leading to activation of the intrinsic apoptotic pathway. Finally, active protein synthesis was found to represent an upstream prerequisite for DC apoptosis induced by proteasome inhibitors, since the translation inhibitor cycloheximide blocked all of the steps of the observed apoptotic response. In conclusion, induction of apoptosis in DC may represent a novel mechanism by which proteasome inhibitors affect the immune response at the antigen‐presenting cell level.


Journal of Immunology | 2003

Cyclopentenone Prostaglandins Induce Lymphocyte Apoptosis by Activating the Mitochondrial Apoptosis Pathway Independent of External Death Receptor Signaling

Alessio Nencioni; Kirsten Lauber; Frank Grünebach; Luk Van Parijs; Claudio Denzlinger; Sebastian Wesselborg; Peter Brossart

15-Deoxy-Δ12,14-PGJ2 (15d-PGJ2) is a naturally occurring cyclopentenone metabolite of PGD2 that possesses both peroxisome proliferator-activated receptor γ (PPAR-γ)-dependent and PPAR-γ-independent anti-inflammatory properties. Recent studies suggest that cyclopentenone PGs may play a role in the down-regulation of inflammation-induced immune responses. In this study, we report that 15d-PGJ2 as well as synthetic PPAR-γ agonists inhibit lymphocyte proliferation. However, only 15d-PGJ2, but not the specific PPAR-γ activators, induce lymphocyte apoptosis. We found that blocking of the death receptor pathway in Fas-associated death domain−/− or caspase-8−/− Jurkat T cells has no effect on apoptosis induction by 15d-PGJ2. Conversely, overexpression of Bcl-2 or Bcl-xL completely inhibits the initiation of apoptosis, indicating that 15d-PGJ2-mediated apoptosis involves activation of the mitochondrial pathway. In line with these results, 15d-PGJ2 induces mitochondria disassemblage as demonstrated by dissipation of mitochondrial transmembrane potential (Δψm) and cytochrome c release. Both of these events are partially inhibited by the broad spectrum caspase inhibitor benzyloxycarbonil-Val-Ala-Asp-fluoromethylketone, suggesting that caspase activation may amplify the mitochondrial alterations initiated by 15d-PGJ2. We also demonstrate that 15d-PGJ2 potently stimulates reactive oxygen species production in Jurkat T cells, and Δψm loss induced by 15d-PGJ2 is prevented by the reactive oxygen species scavenger N-acetyl-l-cysteine. In conclusion, our data indicate that cyclopentenone PGs like 15d-PGJ2 may modulate immune responses even independent of PPAR-γ by activating the mitochondrial apoptosis pathway in lymphocytes in the absence of external death receptor signaling.


Clinical Cancer Research | 2005

Cooperative Cytotoxicity of Proteasome Inhibitors and Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand in Chemoresistant Bcl-2-Overexpressing Cells

Alessio Nencioni; Lucia Wille; Giovanna Dal Bello; Davide Boy; Gabriella Cirmena; Sebastian Wesselborg; C. Belka; Peter Brossart; Franco Patrone; Alberto Ballestrero

Purpose: Bcl-2 overexpression is frequently detected in lymphoid malignancies, being associated with poor prognosis and reduced response to therapy. Here, we evaluated whether Bcl-2 overexpression affects the cytotoxic activity of proteasome inhibitors taken alone or in association with conventional anticancer drugs or tumor necrosis factor–related apoptosis-inducing ligand (TRAIL). Experimental Design: Jurkat cells engineered to overexpress Bcl-2 were treated with proteasome inhibitors (MG132, epoxomicin, and bortezomib), anticancer drugs (etoposide and doxorubicin), TRAIL, or combinations of these compounds. Cell death and loss of mitochondrial transmembrane potential were detected by flow cytometry. Cytosolic relocalization of cytochrome c and SMAC/Diablo, caspase cleavage, and Bcl-2 and Mcl-1 levels were determined by immunoblotting. Nuclear factor-κB inhibition was done by retroviral transduction with a dominant-negative mutant of IκBα. Results: Bcl-2 overexpression results in significant inhibition of apoptosis in response to proteasome inhibitors, antiblastics, and TRAIL. Addition of TRAIL to proteasome inhibitors results in a synergistic cytotoxic effect in Bcl-2-overexpressing cells, whereas this result is not reproduced by the combination of proteasome inhibitors with antiblastic drugs. Importantly, proteasome inhibitors plus TRAIL induce mitochondrial dysfunction irrespective of up-regulated Bcl-2. Bcl-2 cleavage to a fragment with putative proapoptotic activity and elimination of antiapoptotic Mcl-1 may both play a role in proteasome inhibitors-TRAIL cooperation. Conversely, nuclear factor-κB inhibition by proteasome inhibitors is per se insufficient to explain the observed synergy. Conclusions: Combined proteasome inhibitors and TRAIL overcome the apoptotic threshold raised by Bcl-2 and may prove useful in the treatment of chemoresistant malignancies with up-regulated Bcl-2.


Stem Cells | 2004

Cellular Immunotherapy with Dendritic Cells in Cancer: Current Status

Alessio Nencioni; Peter Brossart

Dendritic cells (DCs) are specialized antigen‐presenting cells whose immunogenicity leads to the induction of antigen‐specific immune responses. DCs can easily be generated ex vivo from peripheral blood monocytes or bone marrow/circulating hematopoietic stem cells cultured in the presence of cytokine cocktails. DCs have been used in numerous clinical trials to induce antitumor immune responses in cancer patients. The studies carried out to date have demonstrated that DCs pulsed with tumor antigens can be safely administered, and this approach produces antigen‐specific immune responses. Clinical responses have been observed in a minority of patients. It is likely that either heavy medical pretreatment or the presence of large tumor burdens (or both) is among the causes that impair the benefits of vaccination. Hence, the use of DCs should be considered in earlier stages of disease such as the adjuvant setting. Prospective applications of DCs extend to their use in allogeneic adoptive immunotherapy to specifically target the graft versus tumor reaction. DCs continue to hold promise for cellular immunotherapy, and further investigation is required to determine the clinical settings in which patients will most benefit from the use of this cellular immune adjuvant.


Antioxidants & Redox Signaling | 2013

Inhibition of Nicotinamide Phosphoribosyltransferase Reduces Neutrophil-Mediated Injury in Myocardial Infarction

Fabrizio Montecucco; Inga Bauer; Vincent Braunersreuther; Santina Bruzzone; Alexander Akhmedov; Thomas F. Lüscher; Timo Speer; Alessandro Poggi; Elena Mannino; Graziano Pelli; Katia Galan; Maria Bertolotto; Sébastien Lenglet; Anna Garuti; Christophe Montessuit; René Lerch; Corinne Pellieux; Nicolas Vuilleumier; Franco Dallegri; Jacqueline Mage; Carlos Sebastian; Raul Mostoslavsky; Angèle Gayet-Ageron; Franco Patrone; François Mach; Alessio Nencioni

AIMS Nicotinamide phosphoribosyltransferase (Nampt) is a key enzyme for nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, and recent evidence indicates its role in inflammatory processes. Here, we investigated the potential effects of pharmacological Nampt inhibition with FK866 in a mouse myocardial ischemia/reperfusion model. In vivo and ex vivo mouse myocardial ischemia/reperfusion procedures were performed. RESULTS Treatment with FK866 reduced myocardial infarct size, neutrophil infiltration, and reactive oxygen species (ROS) generation within infarcted hearts in vivo in a mouse model of ischemia and reperfusion. The benefit of FK866 was not shown in the Langendorff model (ex vivo model of working heart without circulating leukocytes), suggesting a direct involvement of these cells in cardiac injury. Sera from FK866-treated mice showed reduced circulating levels of the neutrophil chemoattractant CXCL2 and impaired capacity to prime migration of these cells in vitro. The release of CXCL8 (human homolog of murine chemokine CXCL2) by human peripheral blood mononuclear cells (PBMCs) and Jurkat cells was also reduced by FK866, as well as by sirtuin (SIRT) inhibitors and SIRT6 silencing, implying a pivotal role for this NAD(+)-dependent deacetylase in the production of this chemokine. INNOVATION The pharmacological inhibition of Nampt might represent an effective approach to reduce neutrophilic inflammation- and oxidative stress-mediated tissue damage in early phases of reperfusion after a myocardial infarction. CONCLUSIONS Nampt inhibition appears as a new strategy to dampen CXCL2-induced neutrophil recruitment and thereby reduce neutrophil-mediated tissue injury in mice.

Collaboration


Dive into the Alessio Nencioni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge