Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriella Lindgren is active.

Publication


Featured researches published by Gabriella Lindgren.


Science | 2009

Genome Sequence, Comparative Analysis, and Population Genetics of the Domestic Horse

Claire M. Wade; Elena Giulotto; Snaevar Sigurdsson; Monica Zoli; Sante Gnerre; Freyja Imsland; Teri L. Lear; David L. Adelson; Ernest Bailey; Rebecca R. Bellone; Helmut Blöcker; Ottmar Distl; R.C. Edgar; Manuel Garber; Tosso Leeb; Evan Mauceli; James N. MacLeod; M.C.T. Penedo; Joy M. Raison; Ted Sharpe; J. Vogel; Leif Andersson; Douglas F. Antczak; Tara Biagi; M. M. Binns; B.P. Chowdhary; S.J. Coleman; G. Della Valle; Sarah Fryc; Gérard Guérin

A Horse Is a Horse, of Course The history of horse domestication is closely tied to the history of the human society. Wade et al. (p. 865) report on the sequencing and provide a single nucleotide polymorphism map of the horse (Equus caballus) genome. Horses are a member of the order perissodactyla (odd-toed animals with hooves). The analysis reveals an evolutionarily new centromere on equine chromosome 11 that displays properties of an immature but fully functioning centromere and is devoid of centromeric satellite sequence. The findings clarify the nature of genetic diversity within and across horse breeds and suggest that the horse was domesticated from a relatively large number of females, but few males. The horse genome reveals an evolutionary new centromere and conserved chromosomal sequences relative to other mammals. We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.


Nature | 1997

Fitness loss and germline mutations in barn swallows breeding in Chernobyl

Hans Ellegren; Gabriella Lindgren; Craig R. Primmer; Anders Pape Møller

The severe nuclear accident at Chernobyl in 1986 resulted in the worst reported accidental exposure of radioactive material to free-living organisms. Short-term effects on human populations inhabiting polluted areas include increased incidence of thyroid cancer, infant leukaemia, and congenital malformations in newborns. Two recent studies, have reported, although with some controversy,, that germline mutation rates were increased in humans and voles living close to Chernobyl, but little is known about the viability of the organisms affected. Here we report an increased frequency of partial albinism, a morphological aberration associated with a loss of fitness, among barn swallows, Hirundo rustica, breeding close to Chernobyl. Heritability estimates indicate that mutations causing albinism were at least partly of germline origin. Furthermore, evidence for an increased germline mutation rate was obtained from segregation analysis at two hypervariable microsatellite loci, indicating that mutation events in barn swallows from Chernobyl were two- to tenfold higher than in birds from control areas in Ukraine and Italy.


Nature Genetics | 2008

A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse

Gerli Rosengren Pielberg; Anna Golovko; Elisabeth Sundström; Ino Curik; Johan Lennartsson; Monika Seltenhammer; Thomas Druml; M. M. Binns; Carolyn Fitzsimmons; Gabriella Lindgren; Kaj Sandberg; Roswitha Baumung; Monika Vetterlein; Sara Strömberg; Manfred Grabherr; Claire M. Wade; Kerstin Lindblad-Toh; Fredrik Pontén; Carl-Henrik Heldin; Johann Sölkner; Leif Andersson

In horses, graying with age is an autosomal dominant trait associated with a high incidence of melanoma and vitiligo-like depigmentation. Here we show that the Gray phenotype is caused by a 4.6-kb duplication in intron 6 of STX17 (syntaxin-17) that constitutes a cis-acting regulatory mutation. Both STX17 and the neighboring NR4A3 gene are overexpressed in melanomas from Gray horses. Gray horses carrying a loss-of-function mutation in ASIP (agouti signaling protein) had a higher incidence of melanoma, implying that increased melanocortin-1 receptor signaling promotes melanoma development in Gray horses. The Gray horse provides a notable example of how humans have cherry-picked mutations with favorable phenotypic effects in domestic animals.


Nature | 2012

Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice

L. Andersson; Martin Larhammar; Fatima Memic; Hanna Wootz; Doreen Schwochow; Carl-Johan Rubin; Kalicharan Patra; Thorvaldur Arnason; Lisbeth Wellbring; Göran Hjälm; Freyja Imsland; Jessica L. Petersen; Molly E. McCue; James R. Mickelson; Gus Cothran; Nadav Ahituv; L. Roepstorff; Sofia Mikko; Anna Vallstedt; Gabriella Lindgren; Leif Andersson; Klas Kullander

Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left–right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.


PLOS Genetics | 2012

A high density SNP array for the domestic horse and extant Perissodactyla: Utility for association mapping, genetic diversity, and phylogeny studies

Molly E. McCue; Danika L. Bannasch; Jessica L. Petersen; Jessica Gurr; E. Bailey; M. M. Binns; Ottmar Distl; Gérard Guérin; Telhisa Hasegawa; Emmeline W. Hill; Tosso Leeb; Gabriella Lindgren; M. Cecilia T. Penedo; Knut H. Røed; Oliver A. Ryder; June Swinburne; Teruaki Tozaki; Stephanie J. Valberg; Mark Vaudin; Kerstin Lindblad-Toh; Claire M. Wade; James R. Mickelson

An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalskis Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species.


Nature Genetics | 2004

Limited number of patrilines in horse domestication

Gabriella Lindgren; Niclas Backström; June Swinburne; Linda Hellborg; Annika Einarsson; Kaj Sandberg; Gus Cothran; Carles Vilà; M. M. Binns; Hans Ellegren

Genetic studies using mitochondrial DNA (mtDNA) have identified extensive matrilinear diversity among domestic horses. Here, we show that this high degree of polymorphism is not matched by a corresponding patrilinear diversity of the male-specific Y chromosome. In fact, a screening for single-nucleotide polymorphisms (SNPs) in 14.3 kb of noncoding Y chromosome sequence among 52 male horses of 15 different breeds did not identify a single segregation site. These observations are consistent with a strong sex-bias in the domestication process, with few stallions contributing genetically to the domestic horse.


BMC Genetics | 2006

A missense mutation in PMEL17 is associated with the Silver coat color in the horse

Emma Brunberg; Leif Andersson; Gus Cothran; Kaj Sandberg; Sofia Mikko; Gabriella Lindgren

BackgroundThe Silver coat color, also called Silver dapple, in the horse is characterized by dilution of the black pigment in the hair. This phenotype shows an autosomal dominant inheritance. The effect of the mutation is most visible in the long hairs of the mane and tail, which are diluted to a mixture of white and gray hairs. Herein we describe the identification of the responsible gene and a missense mutation associated with the Silver phenotype.ResultsSegregation data on the Silver locus (Z) were obtained within one half-sib family that consisted of a heterozygous Silver colored stallion with 34 offspring and their 29 non-Silver dams. We typed 41 genetic markers well spread over the horse genome, including one single microsatellite marker (TKY284) close to the candidate gene PMEL17 on horse chromosome 6 (ECA6q23). Significant linkage was found between the Silver phenotype and TKY284 (θ = 0, z = 9.0). DNA sequencing of PMEL17 in Silver and non-Silver horses revealed a missense mutation in exon 11 changing the second amino acid in the cytoplasmic region from arginine to cysteine (Arg618Cys). This mutation showed complete association with the Silver phenotype across multiple horse breeds, and was not found among non-Silver horses with one clear exception; a chestnut colored individual that had several Silver offspring when mated to different non-Silver stallions also carried the exon 11 mutation. In total, 64 Silver horses from six breeds and 85 non-Silver horses from 14 breeds were tested for the exon 11 mutation. One additional mutation located in intron 9, only 759 bases from the missense mutation, also showed complete association with the Silver phenotype. However, as one could expect to find several non-causative mutations completely associated with the Silver mutation, we argue that the missense mutation is more likely to be causative.ConclusionThe present study shows that PMEL17 causes the Silver coat color in the horse and enable genetic testing for this trait.


PLOS Genetics | 2013

Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds

Jessica L. Petersen; James R. Mickelson; Aaron Rendahl; Stephanie J. Valberg; L. Andersson; Jeanette Axelsson; E. Bailey; Danika L. Bannasch; M. M. Binns; Alexandre Secorun Borges; P. A. J. Brama; Artur da Câmara Machado; Stefano Capomaccio; Katia Cappelli; E. Gus Cothran; Ottmar Distl; Laura Y. Fox-Clipsham; Kathryn T. Graves; Gérard Guérin; Bianca Haase; Telhisa Hasegawa; Karin Hemmann; Emmeline W. Hill; Tosso Leeb; Gabriella Lindgren; Hannes Lohi; M. S. Lopes; Beatrice A. McGivney; Sofia Mikko; Nick Orr

Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an FST-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.


Ecology | 1998

GENDER AND ENVIRONMENTAL SENSITIVITY IN NESTLING COLLARED FLYCATCHERS

Ben C. Sheldon; Juha Merilä; Gabriella Lindgren; Hans Ellegren

In many vertebrates, males are apparently more affected by adverse environmental conditions, particularly during early stages of development, than are females. Three explanations have been proposed for this pattern. First, sexual size dimorphism (SSD) may result in sexes having different nutritional requirements to achieve the same viability, and males are more commonly the larger sex. Second, reduced performance of males could result from possession of an unguarded sex chromosome combined with environmental dependence in expression of deleterious recessives. Third, the obsesrved difference may be a consequence of possession of a male phenotype, for example, due to higher circulating levels of androgens associated with development of male reproductive organs acting antagonistically on other systems. We used experimental manipulations of rearing conditions, coupled with a molecular genetic technique for gender identification, to test these hypotheses in a population of Collared Flycatchers, Ficedula albicollis, a migrant, hole-nesting passerine bird. Nestlings of that species exhibit sexual size monomorphism, and as with other birds, females are heterogametic. As a consequence, the three hypotheses make different predictions about the way in which gender and the environment will interact. Comparisons of brothers and sisters in a split-brood, partial cross-fostering design revealed no evidence of gender × environment interaction on body size, wing length, body mass, or recruitment to the breeding population in this size monomorphic species. Our results therefore support the first hypothesis, namely, that sex differences in performance in sexually dimorphic species are most likely to be caused by different nutritional requirements. Our experiments allow us to investigate the existence of sex-specific fitness differences across an environmental gradient; such data are important for generating and testing hypotheses relating to adaptive sex allocation. The absence of gender × environment interactions demonstrated here supports recent studies of this species indicating a lack of sex ratio adjustment in response to a related, natural, environmental gradient. The possibility of gender × environment interactions along environmental gradients other than those investigated here should be addressed experimentally.


Mammalian Genome | 1997

Genetical and physical assignments of equine microsatellites--first integration of anchored markers in horse genome mapping.

Matthew Breen; Gabriella Lindgren; M. M. Binns; Julianne Norman; Zlaka Irvin; K. Bell; Kaj Sandberg; Hans Ellegren

Twenty equine microsatellites were isolated from a ge-nomic phage library, and their genetical and physical localization was sought by linkage mapping and fluorescent in situ hybridization (FISH). Nineteen of the markers were found to be polymorphic with, in most cases, heterozygosities exceeding 50%. The markers were mapped in a Swedish reference family for gene mapping, comprising eight half-sib families from Standardbred and Icelandic horse sires. Segregation was analyzed against a set of 35 other markers typed in the pedigree. Thirteen of the microsatellites showed linkage to at least one other marker, with a total of 21 markers being involved in these linkages. In parallel, 18 of the microsatellites could be assigned to their chromosomal region by FISH. These assignments involved eight equine autosomes: ECA1, 2, 4, 6, 9, 10, 15, and 16. The genetical and physical mappings revealed by this study represent a significant extension of the current knowledge of the equine genome map.

Collaboration


Dive into the Gabriella Lindgren's collaboration.

Top Co-Authors

Avatar

L. Andersson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Sofia Mikko

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Brandon D. Velie

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

S. Eriksson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

M. M. Binns

Royal Veterinary College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Jäderkvist Fegraeus

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaj Sandberg

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge