Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. M. Binns is active.

Publication


Featured researches published by M. M. Binns.


Science | 2009

Genome Sequence, Comparative Analysis, and Population Genetics of the Domestic Horse

Claire M. Wade; Elena Giulotto; Snaevar Sigurdsson; Monica Zoli; Sante Gnerre; Freyja Imsland; Teri L. Lear; David L. Adelson; Ernest Bailey; Rebecca R. Bellone; Helmut Blöcker; Ottmar Distl; R.C. Edgar; Manuel Garber; Tosso Leeb; Evan Mauceli; James N. MacLeod; M.C.T. Penedo; Joy M. Raison; Ted Sharpe; J. Vogel; Leif Andersson; Douglas F. Antczak; Tara Biagi; M. M. Binns; B.P. Chowdhary; S.J. Coleman; G. Della Valle; Sarah Fryc; Gérard Guérin

A Horse Is a Horse, of Course The history of horse domestication is closely tied to the history of the human society. Wade et al. (p. 865) report on the sequencing and provide a single nucleotide polymorphism map of the horse (Equus caballus) genome. Horses are a member of the order perissodactyla (odd-toed animals with hooves). The analysis reveals an evolutionarily new centromere on equine chromosome 11 that displays properties of an immature but fully functioning centromere and is devoid of centromeric satellite sequence. The findings clarify the nature of genetic diversity within and across horse breeds and suggest that the horse was domesticated from a relatively large number of females, but few males. The horse genome reveals an evolutionary new centromere and conserved chromosomal sequences relative to other mammals. We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.


Nature Genetics | 2008

A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse

Gerli Rosengren Pielberg; Anna Golovko; Elisabeth Sundström; Ino Curik; Johan Lennartsson; Monika Seltenhammer; Thomas Druml; M. M. Binns; Carolyn Fitzsimmons; Gabriella Lindgren; Kaj Sandberg; Roswitha Baumung; Monika Vetterlein; Sara Strömberg; Manfred Grabherr; Claire M. Wade; Kerstin Lindblad-Toh; Fredrik Pontén; Carl-Henrik Heldin; Johann Sölkner; Leif Andersson

In horses, graying with age is an autosomal dominant trait associated with a high incidence of melanoma and vitiligo-like depigmentation. Here we show that the Gray phenotype is caused by a 4.6-kb duplication in intron 6 of STX17 (syntaxin-17) that constitutes a cis-acting regulatory mutation. Both STX17 and the neighboring NR4A3 gene are overexpressed in melanomas from Gray horses. Gray horses carrying a loss-of-function mutation in ASIP (agouti signaling protein) had a higher incidence of melanoma, implying that increased melanocortin-1 receptor signaling promotes melanoma development in Gray horses. The Gray horse provides a notable example of how humans have cherry-picked mutations with favorable phenotypic effects in domestic animals.


Journal of General Virology | 1988

Gene Sequence and Mapping Data from Marek's Disease Virus and Herpesvirus of Turkeys: Implications for Herpesvirus Classification

Anne E. Buckmaster; Simon D. Scott; Martin Sanderson; Michael E. G. Boursnell; Norman L. J. Ross; M. M. Binns

Purified DNAs from Mareks disease virus (MDV) and the herpesvirus of turkeys (HVT) were randomly sheared and cloned into the M13 bacteriophage. Two-hundred and ten MDV and 130 HVT clones were sequenced to give representative samples of the genome sequences. The predicted amino acid sequences from these gammaherpes-viruses were compared to known sequences from other herpesviruses using computer analysis. Thirty-five MDV and 24 HVT genes were identified by comparison with varicella-zoster virus (VZV), an alphaherpesvirus. However, only 14 MDV and seven HVT genes, giving generally lower homology scores, were found by comparison with Epstein-Barr virus (EBV), a gammaherpesvirus, indicating that MDV and HVT sequences bear greater similarity to VZV than to EBV sequences. A number of sequences were mapped by hybridizing labelled M13 clones to Southern blots of restriction fragments of MDV or HVT DNA. The results were consistent with the MDV and HVT genomes being collinear with VZV.


PLOS Genetics | 2012

A high density SNP array for the domestic horse and extant Perissodactyla: Utility for association mapping, genetic diversity, and phylogeny studies

Molly E. McCue; Danika L. Bannasch; Jessica L. Petersen; Jessica Gurr; E. Bailey; M. M. Binns; Ottmar Distl; Gérard Guérin; Telhisa Hasegawa; Emmeline W. Hill; Tosso Leeb; Gabriella Lindgren; M. Cecilia T. Penedo; Knut H. Røed; Oliver A. Ryder; June Swinburne; Teruaki Tozaki; Stephanie J. Valberg; Mark Vaudin; Kerstin Lindblad-Toh; Claire M. Wade; James R. Mickelson

An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalskis Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species.


Nature Genetics | 2004

Limited number of patrilines in horse domestication

Gabriella Lindgren; Niclas Backström; June Swinburne; Linda Hellborg; Annika Einarsson; Kaj Sandberg; Gus Cothran; Carles Vilà; M. M. Binns; Hans Ellegren

Genetic studies using mitochondrial DNA (mtDNA) have identified extensive matrilinear diversity among domestic horses. Here, we show that this high degree of polymorphism is not matched by a corresponding patrilinear diversity of the male-specific Y chromosome. In fact, a screening for single-nucleotide polymorphisms (SNPs) in 14.3 kb of noncoding Y chromosome sequence among 52 male horses of 15 different breeds did not identify a single segregation site. These observations are consistent with a strong sex-bias in the domestication process, with few stallions contributing genetically to the domestic horse.


Virus Research | 1986

Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41

David Cavanagh; Philip J. Davis; Darryl Pappin; M. M. Binns; Michael E. G. Boursnell; T. D. K. Brown

Abstract The spike protein of avian infectious bronchitis coronavirus comprises two glycopolypeptides S1 and S2 derived by cleavage of a proglycopolypeptide So, the nucleotide sequence of which has recently been determined for the Beaudette strain (Binns M.M. et al., 1985, J. Gen. Virol. 66, 719–726). The order of the two glycopolypeptides within So is aminoterminus(N)-Sl-S2-carboxyterminus(C). To locate the N-terminus of S2 we have performed partial amino acid sequencing on S2 from IBV-Beaudette labelled with [3H]serine and from the related strain IBV-M41 labelled with [3H]valine, leucine and isoleucine. The residues identified and their positions relative to the N-terminus of S2 were: serine, 13; valine, 6, 12; leucine, none in the first 20 residues; isoleucine, 2, 19. These results identified the N-terminus of S2 of IBV-Beaudette as serine, 520 residues from the N-terminus of S1, excluding the signal sequence. Immediately to the N-terminal side of residue 520 So has the sequence Arg-Arg-Phe-Arg-Arg; similar basic connecting peptides are a feature of several other virus spike glycoproteins. It was deduced that for IBV-Beaudette SI comprises 519 residues (M r 57.0K) or 514 residues (56.2K) if the connecting peptide was to be removed by carboxypeptidase-like activity in vivo while S2 has 625 residues (69.2K). Nucleotide sequencing of the cleavage region of the So gene of IBV-M41 revealed the same connecting peptide as IBV-Beaudette and that the first 20 N-terminal residues of S2 of IBV-M41 were identical to those of the Beaudette strain. IBV-Beaudette grown in Vero cells had some uncleaved So; this was cleavable by 10 μg/ml of trypsin and of chymotrypsin. Partial N-terminal analysis of S1 from IBV-M41 identified leucine and valine residues at positions 2 and 9 respectively from the N-terminus. This confirms the identification made by Binns et al. (1985), of the N-terminus of S1 and the end of the signal sequence of the IBV-Beaudette spike propolypeptide. N-terminal sequencing of [3H]leucine-labelled IBV-Beaudette membrane (M) polypeptide showed leucine residues at positions 8,16 and 22 from the N-terminus; these results confirm the open reading frame identified by M.E.G. Boursnell et al. (1984, Virus Res. 1, 303–313) in the nucleotide sequence of M. The N-terminus of the nucleocapsid (n) polypeptide appeared to be blocked.


PLOS Genetics | 2013

Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds

Jessica L. Petersen; James R. Mickelson; Aaron Rendahl; Stephanie J. Valberg; L. Andersson; Jeanette Axelsson; E. Bailey; Danika L. Bannasch; M. M. Binns; Alexandre Secorun Borges; P. A. J. Brama; Artur da Câmara Machado; Stefano Capomaccio; Katia Cappelli; E. Gus Cothran; Ottmar Distl; Laura Y. Fox-Clipsham; Kathryn T. Graves; Gérard Guérin; Bianca Haase; Telhisa Hasegawa; Karin Hemmann; Emmeline W. Hill; Tosso Leeb; Gabriella Lindgren; Hannes Lohi; M. S. Lopes; Beatrice A. McGivney; Sofia Mikko; Nick Orr

Intense selective pressures applied over short evolutionary time have resulted in homogeneity within, but substantial variation among, horse breeds. Utilizing this population structure, 744 individuals from 33 breeds, and a 54,000 SNP genotyping array, breed-specific targets of selection were identified using an FST-based statistic calculated in 500-kb windows across the genome. A 5.5-Mb region of ECA18, in which the myostatin (MSTN) gene was centered, contained the highest signature of selection in both the Paint and Quarter Horse. Gene sequencing and histological analysis of gluteal muscle biopsies showed a promoter variant and intronic SNP of MSTN were each significantly associated with higher Type 2B and lower Type 1 muscle fiber proportions in the Quarter Horse, demonstrating a functional consequence of selection at this locus. Signatures of selection on ECA23 in all gaited breeds in the sample led to the identification of a shared, 186-kb haplotype including two doublesex related mab transcription factor genes (DMRT2 and 3). The recent identification of a DMRT3 mutation within this haplotype, which appears necessary for the ability to perform alternative gaits, provides further evidence for selection at this locus. Finally, putative loci for the determination of size were identified in the draft breeds and the Miniature horse on ECA11, as well as when signatures of selection surrounding candidate genes at other loci were examined. This work provides further evidence of the importance of MSTN in racing breeds, provides strong evidence for selection upon gait and size, and illustrates the potential for population-based techniques to find genomic regions driving important phenotypes in the modern horse.


Mammalian Genome | 1997

Genetical and physical assignments of equine microsatellites--first integration of anchored markers in horse genome mapping.

Matthew Breen; Gabriella Lindgren; M. M. Binns; Julianne Norman; Zlaka Irvin; K. Bell; Kaj Sandberg; Hans Ellegren

Twenty equine microsatellites were isolated from a ge-nomic phage library, and their genetical and physical localization was sought by linkage mapping and fluorescent in situ hybridization (FISH). Nineteen of the markers were found to be polymorphic with, in most cases, heterozygosities exceeding 50%. The markers were mapped in a Swedish reference family for gene mapping, comprising eight half-sib families from Standardbred and Icelandic horse sires. Segregation was analyzed against a set of 35 other markers typed in the pedigree. Thirteen of the microsatellites showed linkage to at least one other marker, with a total of 21 markers being involved in these linkages. In parallel, 18 of the microsatellites could be assigned to their chromosomal region by FISH. These assignments involved eight equine autosomes: ECA1, 2, 4, 6, 9, 10, 15, and 16. The genetical and physical mappings revealed by this study represent a significant extension of the current knowledge of the equine genome map.


Neuromuscular Disorders | 1999

Molecular analysis of a spontaneous dystrophin `knockout' dog

Scott J. Schatzberg; Natasha J. Olby; Matthew Breen; Louise V. B. Anderson; Cordelia Langford; Helen F Dickens; Stephen D. Wilton; Caroline J. Zeiss; M. M. Binns; Joe N. Kornegay; Glenn E. Morris; Nicholas J.H. Sharp

We have determined the molecular basis for skeletal myopathy and dilated cardiomyopathy in two male German short-haired pointer (GSHP) littermates. Analysis of skeletal muscle demonstrated a complete absence of dystrophin on Western blot analysis. PCR analysis of genomic DNA revealed a deletion encompassing the entire dystrophin gene. Molecular cytogenetic analysis of lymphocytes from the dam and both dystrophic pups confirmed a visible deletion in the p21 region of the affected canine X chromosome. Utrophin is up-regulated in the skeletal muscle, but does not appear to ameliorate the dystrophic canine phenotype. This new canine model should further our understanding of the physiological and biochemical processes in Duchenne muscular dystrophy.


Chromosome Research | 1996

Chromosome-specific paints from a high-resolution flow karyotype of the dog

Cordelia Langford; Patricia E. Fischer; M. M. Binns; N. G. Holmes; Nigel P. Carter

Using peripheral blood lymphocyte cultures and duallaser flow cytometry, we have routinely obtained high-resolution bivariate flow karyotypes of the dog in which 32 peaks are resolved. To allow the identification of the chromosome types in each peak, chromosomes were flow sorted, amplified and labelled by polymerase chain reaction with partially degenerate primers and hybridized onto metaphase spreads of a male dog. The chromosome paints from 22 of the 32 peaks each hybridized to single homologue pairs and eight peaks each hybridized to two pairs. Paints from the remaining two peaks hybridized to only one homologue each in the male metaphase spread, thus corresponding to the sex chromosomes X and Y. All of the 38 pairs of autosomes and the two sex chromosomes of the dog could be accounted for in these painting experiments. The positions of chromosomes 1–21 were assigned to the flow karyotype (only chromosomes 1–21 have as yet been officially designated). The high-resolution flow karyotype and the chromosome paints will facilitate further standardization of the dog karyotype. The ability to sort sufficient quantities of dog chromosomes for the production of chromosome-specific DNA libraries has the potential to accelerate the physical and genetic mapping of the dog genome.

Collaboration


Dive into the M. M. Binns's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Breen

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard Guérin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Edward Ryder

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Gabriella Lindgren

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Sampson

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge