Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabrielle B. McCallum is active.

Publication


Featured researches published by Gabrielle B. McCallum.


The Lancet Respiratory Medicine | 2013

Long-term azithromycin for Indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease (Bronchiectasis Intervention Study): a multicentre, double-blind, randomised controlled trial

Patricia C. Valery; Peter S. Morris; Catherine A. Byrnes; Keith Grimwood; Paul J. Torzillo; Paul Bauert; I. Brent Masters; Abbey Diaz; Gabrielle B. McCallum; Charmaine Mobberley; Irene Tjhung; Kim M. Hare; Robert S. Ware; Anne B. Chang

BACKGROUND Indigenous children in high-income countries have a heavy burden of bronchiectasis unrelated to cystic fibrosis. We aimed to establish whether long-term azithromycin reduced pulmonary exacerbations in Indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease. METHODS Between Nov 12, 2008, and Dec 23, 2010, we enrolled Indigenous Australian, Maori, and Pacific Island children aged 1-8 years with either bronchiectasis or chronic suppurative lung disease into a multicentre, double-blind, randomised, parallel-group, placebo-controlled trial. Eligible children had had at least one pulmonary exacerbation in the previous 12 months. Children were randomised (1:1 ratio, by computer-generated sequence with permuted block design, stratified by study site and exacerbation frequency [1-2 vs ≥3 episodes in the preceding 12 months]) to receive either azithromycin (30 mg/kg) or placebo once a week for up to 24 months. Allocation concealment was achieved by double-sealed, opaque envelopes; participants, caregivers, and study personnel were masked to assignment until after data analysis. The primary outcome was exacerbation (respiratory episodes treated with antibiotics) rate. Analysis of the primary endpoint was by intention to treat. At enrolment and at their final clinic visits, children had deep nasal swabs collected, which we analysed for antibiotic-resistant bacteria. This study is registered with the Australian New Zealand Clinical Trials Registry; ACTRN12610000383066. FINDINGS 45 children were assigned to azithromycin and 44 to placebo. The study was stopped early for feasibility reasons on Dec 31, 2011, thus children received the intervention for 12-24 months. The mean treatment duration was 20·7 months (SD 5·7), with a total of 902 child-months in the azithromycin group and 875 child-months in the placebo group. Compared with the placebo group, children receiving azithromycin had significantly lower exacerbation rates (incidence rate ratio 0·50; 95% CI 0·35-0·71; p<0·0001). However, children in the azithromycin group developed significantly higher carriage of azithromycin-resistant bacteria (19 of 41, 46%) than those receiving placebo (four of 37, 11%; p=0·002). The most common adverse events were non-pulmonary infections (71 of 112 events in the azithromycin group vs 132 of 209 events in the placebo group) and bronchiectasis-related events (episodes or investigations; 22 of 112 events in the azithromycin group vs 48 of 209 events in the placebo group); however, study drugs were well tolerated with no serious adverse events being attributed to the intervention. INTERPRETATION Once-weekly azithromycin for up to 24 months decreased pulmonary exacerbations in Indigenous children with non-cystic-fibrosis bronchiectasis or chronic suppurative lung disease. However, this strategy was also accompanied by increased carriage of azithromycin-resistant bacteria, the clinical consequences of which are uncertain, and will need careful monitoring and further study. FUNDING National Health and Medical Research Council (Australia) and Health Research Council (New Zealand).


Pediatric Pulmonology | 2014

Indigenous children from three countries with non-cystic fibrosis chronic suppurative lung disease/bronchiectasis

Rosalyn J. Singleton; Patricia C. Valery; Peter S. Morris; Catherine A. Byrnes; Keith Grimwood; Gregory J. Redding; Paul J. Torzillo; Gabrielle B. McCallum; Lori Chikoyak; Charmaine Mobberly; Robert C. Holman; Anne B. Chang

Indigenous children in developed countries are at increased risk of chronic suppurative lung disease (CSLD), including bronchiectasis. We evaluated sociodemographic and medical factors in indigenous children with CSLD/bronchiectasis from Australia, United States (US), and New Zealand (NZ).


PLOS ONE | 2013

Longitudinal Nasopharyngeal Carriage and Antibiotic Resistance of Respiratory Bacteria in Indigenous Australian and Alaska Native Children with Bronchiectasis

Kim M. Hare; Rosalyn J. Singleton; Keith Grimwood; Patricia C. Valery; Allen C. Cheng; Peter S. Morris; Amanda J. Leach; Heidi C. Smith-Vaughan; Mark D. Chatfield; Greg Redding; Alisa Reasonover; Gabrielle B. McCallum; Lori Chikoyak; Malcolm McDonald; Ngiare Brown; Paul J. Torzillo; Anne B. Chang

Background Indigenous children in Australia and Alaska have very high rates of chronic suppurative lung disease (CSLD)/bronchiectasis. Antibiotics, including frequent or long-term azithromycin in Australia and short-term beta-lactam therapy in both countries, are often prescribed to treat these patients. In the Bronchiectasis Observational Study we examined over several years the nasopharyngeal carriage and antibiotic resistance of respiratory bacteria in these two PCV7-vaccinated populations. Methods Indigenous children aged 0.5–8.9 years with CSLD/bronchiectasis from remote Australia (n = 79) and Alaska (n = 41) were enrolled in a prospective cohort study during 2004–8. At scheduled study visits until 2010 antibiotic use in the preceding 2-weeks was recorded and nasopharyngeal swabs collected for culture and antimicrobial susceptibility testing. Analysis of respiratory bacterial carriage and antibiotic resistance was by baseline and final swabs, and total swabs by year. Results Streptococcus pneumoniae carriage changed little over time. In contrast, carriage of Haemophilus influenzae declined and Staphylococcus aureus increased (from 0% in 2005–6 to 23% in 2010 in Alaskan children); these changes were associated with increasing age. Moraxella catarrhalis carriage declined significantly in Australian, but not Alaskan, children (from 64% in 2004–6 to 11% in 2010). While beta-lactam antibiotic use was similar in the two cohorts, Australian children received more azithromycin. Macrolide resistance was significantly higher in Australian compared to Alaskan children, while H. influenzae beta-lactam resistance was higher in Alaskan children. Azithromycin use coincided significantly with reduced carriage of S. pneumoniae, H. influenzae and M. catarrhalis, but increased carriage of S. aureus and macrolide-resistant strains of S. pneumoniae and S. aureus (proportion of carriers and all swabs), in a ‘cumulative dose-response’ relationship. Conclusions Over time, similar (possibly age-related) changes in nasopharyngeal bacterial carriage were observed in Australian and Alaskan children with CSLD/bronchiectasis. However, there were also significant frequency-dependent differences in carriage and antibiotic resistance that coincided with azithromycin use.


BMC Infectious Diseases | 2009

Emerging pneumococcal carriage serotypes in a high-risk population receiving universal 7-valent pneumococcal conjugate vaccine and 23-valent polysaccharide vaccine since 2001

Amanda J. Leach; Peter S. Morris; Gabrielle B. McCallum; Cate Wilson; Liz Stubbs; Jemima Beissbarth; Susan P. Jacups; Kim M. Hare; Heidi Smith-Vaughan

BackgroundIn Australia in June 2001, a unique pneumococcal vaccine schedule commenced for Indigenous infants; seven-valent pneumococcal conjugate vaccine (7PCV) given at 2, 4, and 6 months of age and 23-valent pneumococcal polysaccharide vaccine (23PPV) at 18 months of age. This study presents carriage serotypes following this schedule.MethodsWe conducted cross sectional surveys of pneumococcal carriage in Aboriginal children 0 to 6 years of age living in remote Aboriginal communities (RACs) in 2003 and 2005. Nasal secretions were collected and processed according to published methods.Results902 children (mean age 25 months) living in 29 communities in 2003 and 818 children (mean age 35 months) in 17 communities in 2005 were enrolled. 87% children in 2003 and 96% in 2005 had received two or more doses of 7PCV. From 2003 to 2005, pneumococcal carriage was reduced from 82% to 76% and reductions were apparent in all age groups; 7PCV-type carriage was reduced from 11% to 8%, and 23PPV-non-7PCV-type carriage from 31% to 25% respectively. Thus non-23PPV-type carriage increased from 57% to 67%. All these changes were statistically significant, as were changes for some specific serotypes. Shifts could not be attributed to vaccination alone. The top 10 of 40 serotypes identified were (in descending order) 16F, 19A, 11A, 6C, 23B, 19F, 6A, 35B, 6B, 10A and 35B. Carriage of penicillin non-susceptible (MIC > = 0.12 μg/mL) strains (15% overall) was detected in serotypes (descending order) 19A, 19F, 6B, 16F, 11A, 9V, 23B, and in 4 additional serotypes. Carriage of azithromycin resistant (MIC > = 2 μg/mL) strains (5% overall), was detected in serotypes (descending order) 23B, 17F, 9N, 6B, 6A, 11A, 23F, and in 10 additional serotypes including 6C.ConclusionPneumococcal carriage remains high (~80%) in this vaccinated population. Uptake of both pneumococcal vaccines increased, and carriage was reduced between 2003 and 2005. Predominant serotypes in combined years were 16F, 19A, 11A, 6C and 23B. Antimicrobial non-susceptibility was detected in these and 17 additional serotypes. Shifts in serotype-specific carriage suggest a need more research to clarify the association between pneumococcal vaccination and carriage at the serotype level.


Pediatric Pulmonology | 2013

Severity Scoring Systems: Are They Internally Valid, Reliable and Predictive of Oxygen Use in Children With Acute Bronchiolitis?

Gabrielle B. McCallum; Peter S. Morris; Clare C. Wilson; Lesley A. Versteegh; Linda M. Ward; Mark D. Chatfield; Anne B. Chang

Severity scores are commonly used in research and clinically to assess the severity of bronchiolitis. However, there are limitations as few have been validated. The aim of our study was to: (i) determine the validity and reliability of a bronchiolitis scoring system, and (ii) examine if the score predicted the need for oxygen at 12 and 24 hrs. Children aged <24 months presenting to Royal Darwin Hospital with a clinical diagnosis of bronchiolitis were eligible to participate.


Chest | 2014

Respiratory Exacerbations in Indigenous Children From Two Countries With Non-Cystic Fibrosis Chronic Suppurative Lung Disease/Bronchiectasis

Gregory J. Redding; Rosalyn J. Singleton; Patricia C. Valery; Hayley Williams; Keith Grimwood; Peter S. Morris; Paul J. Torzillo; Gabrielle B. McCallum; Lori Chikoyak; Robert C. Holman; Anne B. Chang

BACKGROUND Acute respiratory exacerbations (AREs) cause morbidity and lung function decline in children with chronic suppurative lung disease (CSLD) and bronchiectasis. In a prospective longitudinal cohort study, we determined the patterns of AREs and factors related to increased risks for AREs in children with CSLD/bronchiectasis. METHODS Ninety-three indigenous children aged 0.5 to 8 years with CSLD/bronchiectasis in Australia (n = 57) and Alaska (n = 36) during 2004 to 2009 were followed for > 3 years. Standardized parent interviews, physical examinations, and medical record reviews were undertaken at enrollment and every 3 to 6 months thereafter. RESULTS Ninety-three children experienced 280 AREs (median = 2, range = 0-11 per child) during the 3-year period; 91 (32%) were associated with pneumonia, and 43 (15%) resulted in hospitalization. Of the 93 children, 69 (74%) experienced more than two AREs over the 3-year period, and 28 (30%) had more than one ARE in each study year. The frequency of AREs declined significantly over each year of follow-up. Factors associated with recurrent (two or more) AREs included age < 3 years, ARE-related hospitalization in the first year of life, and pneumonia or hospitalization for ARE in the year preceding enrollment. Factors associated with hospitalizations for AREs in the first year of study included age < 3 years, female caregiver education, and regular use of bronchodilators. CONCLUSIONS AREs are common in children with CSLD/bronchiectasis, but with clinical care and time AREs occur less frequently. All children with CSLD/bronchiectasis require comprehensive care; however, treatment strategies may differ for these patients based on their changing risks for AREs during each year of care.


Clinical and Vaccine Immunology | 2009

Age-Specific Cluster of Cases of Serotype 1 Streptococcus pneumoniae Carriage in Remote Indigenous Communities in Australia

Heidi C. Smith-Vaughan; Robyn L. Marsh; Grant Mackenzie; Janelle Fisher; Peter S. Morris; Kim M. Hare; Gabrielle B. McCallum; Michael J. Binks; Denise Murphy; Gary Lum; Heather Cook; Victoria Krause; Susan P. Jacups; Amanda J. Leach

ABSTRACT Seven-valent pneumococcal conjugate vaccination commenced in 2001 for Australian indigenous infants. Pneumococcal carriage surveillance detected substantial replacement with nonvaccine serotypes and a cluster of serotype 1 carriage. Our aim was to review Streptococcus pneumoniae serotype 1 carriage and invasive pneumococcal disease (IPD) data for this population and to analyze serotype 1 isolates. Carriage data were collected between 1992 and 2004 in the Darwin region, one of the five regions in the Northern Territory. Carriage data were also collected in 2003 and 2005 from four regions in the Northern Territory. Twenty-six cases of serotype 1 IPD were reported from 1994 to 2007 in the Northern Territory. Forty-four isolates were analyzed by BOX typing and 11 by multilocus sequence typing. In the Darwin region, 26 children were reported carrying serotype 1 (ST227) in 2002 but not during later surveillance. Scattered cases of serotype 1 carriage were noted in two other regions. Cocolonization of serotype 1 with other pneumococcal serotypes was common (34% serotype 1-positive swabs). In conclusion, pneumococcal carriage studies detected intermittent serotype 1 carriage and an ST227 cluster in children in indigenous communities in the Northern Territory of Australia. There was no apparent increase in serotype 1 IPD during this time. The rate of serotype 1 cocolonization with other pneumococcal serotypes suggests that carriage of this serotype may be underestimated.


BMC Pediatrics | 2012

Azithromycin for Indigenous children with bronchiectasis: study protocol for a multi-centre randomized controlled trial

Patricia C. Valery; Peter S. Morris; Keith Grimwood; Paul J. Torzillo; Catherine A. Byrnes; I. Brent Masters; Paul Bauert; Gabrielle B. McCallum; Charmaine Mobberly; Anne B. Chang

BackgroundThe prevalence of chronic suppurative lung disease (CSLD) and bronchiectasis unrelated to cystic fibrosis (CF) among Indigenous children in Australia, New Zealand and Alaska is very high. Antibiotics are a major component of treatment and are used both on a short or long-term basis. One aim of long-term or maintenance antibiotics is to reduce the frequency of acute pulmonary exacerbations and symptoms. However, there are few studies investigating the efficacy of long-term antibiotic use for CSLD and non-CF bronchiectasis among children. This study tests the hypothesis that azithromycin administered once a week as maintenance antibiotic treatment will reduce the rate of pulmonary exacerbations in Indigenous children with bronchiectasis.Methods/designWe are conducting a multicentre, randomised, double-blind, placebo controlled clinical trial in Australia and New Zealand. Inclusion criteria are: Aboriginal, Torres Strait Islander, Maori or Pacific Island children aged 1 to 8 years, diagnosed with bronchiectasis (or probable bronchiectasis) with no underlying disease identified (such as CF or primary immunodeficiency), and having had at least one episode of pulmonary exacerbation in the last 12 months. After informed consent, children are randomised to receive either azithromycin (30 mg/kg once a week) or placebo (once a week) for 12–24 months from study entry. Primary outcomes are the rate of pulmonary exacerbations and time to pulmonary exacerbation determined by review of patient medical records. Secondary outcomes include length and severity of pulmonary exacerbation episodes, changes in growth, school loss, respiratory symptoms, forced expiratory volume in 1-second (FEV1; for children ≥6 years), and sputum characteristics. Safety endpoints include serious adverse events. Antibiotic resistance in respiratory bacterial pathogens colonising the nasopharynx is monitored. Data derived from medical records and clinical assessments every 3 to 4 months for up to 24 months from study entry are recorded on standardised forms.DiscussionShould this trial demonstrate that azithromycin is efficacious in reducing the number of pulmonary exacerbations, it will provide a much-needed rationale for the use of long-term antibiotics in the medical management of bronchiectasis in Indigenous children.Trial registrationAustralian New Zealand Clinical Trials Registry: ACTRN12610000383066


Trials | 2013

Bronchiectasis exacerbation study on azithromycin and amoxycillin-clavulanate for respiratory exacerbations in children (BEST-2): study protocol for a randomized controlled trial

Anne B. Chang; Keith Grimwood; Andrew C. Wilson; Peter Van Asperen; Catherine A. Byrnes; Kerry-Ann F O’Grady; Colin F. Robertson; Paul J. Torzillo; Gabrielle B. McCallum; Ian B. Masters; Helen Buntain; Ian M. Mackay; Jacobus P.J. Ungerer; Joanne Tuppin; Peter S. Morris

BackgroundBronchiectasis unrelated to cystic fibrosis (CF) is being increasingly recognized in children and adults globally, both in resource-poor and in affluent countries. However, high-quality evidence to inform management is scarce. Oral amoxycillin-clavulanate is often the first antibiotic chosen for non-severe respiratory exacerbations, because of the antibiotic-susceptibility patterns detected in the respiratory pathogens commonly associated with bronchiectasis. Azithromycin has a prolonged half-life, and with its unique anti-bacterial, immunomodulatory, and anti-inflammatory properties, presents an attractive alternative. Our proposed study will test the hypothesis that oral azithromycin is non-inferior (within a 20% margin) to amoxycillin-clavulanate at achieving resolution of non-severe respiratory exacerbations by day 21 of treatment in children with non-CF bronchiectasis.MethodsThis will be a multicenter, randomized, double-blind, double-dummy, placebo-controlled, parallel group trial involving six Australian and New Zealand centers. In total, 170 eligible children will be stratified by site and bronchiectasis etiology, and randomized (allocation concealed) to receive: 1) azithromycin (5 mg/kg daily) with placebo amoxycillin-clavulanate or 2) amoxycillin-clavulanate (22.5 mg/kg twice daily) with placebo azithromycin for 21 days as treatment for non-severe respiratory exacerbations. Clinical data and a parent-proxy cough-specific quality of life (PC-QOL) score will be obtained at baseline, at the start and resolution of exacerbations, and on day 21. In most children, blood and deep-nasal swabs will also be collected at the same time points. The primary outcome is the proportion of children whose exacerbations have resolved at day 21. The main secondary outcome is the PC-QOL score. Other outcomes are: time to next exacerbation; requirement for hospitalization; duration of exacerbation, and spirometry data. Descriptive viral and bacteriological data from nasal samples and blood inflammatory markers will be reported where available.DiscussionCurrently, there are no published randomized controlled trials (RCT) to underpin effective, evidence-based management of acute respiratory exacerbations in children with non-CF bronchiectasis. To help address this information gap, we are conducting two RCTs. The first (b ronchiectasis e xacerbation st udy; BEST-1) evaluates the efficacy of azithromycin and amoxycillin-clavulanate compared with placebo, and the second RCT (BEST-2), described here, is designed to determine if azithromycin is non-inferior to amoxycillin-clavulanate in achieving symptom resolution by day 21 of treatment in children with acute respiratory exacerbations.Trial registrationAustralia and New Zealand Clinical Trials Register (ANZCTR) number http://ACTRN12612000010897. http://www.anzctr.org.au/trial_view.aspx?id=347879


Frontiers in Pediatrics | 2015

Three-weekly doses of azithromycin for indigenous infants hospitalized with bronchiolitis: a multicentre, randomized, placebo-controlled trial.

Gabrielle B. McCallum; Peter S. Morris; Keith Grimwood; Carolyn Maclennan; Andrew White; Mark D. Chatfield; Ian M. Mackay; Heidi C. Smith-Vaughan; Clare C. Mckay; Lesley A. Versteegh; Nerida Jacobsen; Charmaine Mobberley; Catherine A. Byrnes; Anne B. Chang

BACKGROUND Bronchiolitis is a major health burden in infants globally, particularly among Indigenous populations. It is unknown if 3 weeks of azithromycin improve clinical outcomes beyond the hospitalization period. In an international, double-blind randomized controlled trial, we determined if 3 weeks of azithromycin improved clinical outcomes in Indigenous infants hospitalized with bronchiolitis. METHODS Infants aged ≤24 months were enrolled from three centers and randomized to receive three once-weekly doses of either azithromycin (30 mg/kg) or placebo. Nasopharyngeal swabs were collected at baseline and 48 h later. Primary endpoints were hospital length of stay (LOS) and duration of oxygen supplementation monitored every 12 h until judged ready for discharge. Secondary outcomes were: day-21 symptom/signs, respiratory rehospitalizations within 6 months post-discharge and impact upon nasopharyngeal bacteria and virus shedding at 48 h. RESULTS Two hundred nineteen infants were randomized (n = 106 azithromycin, n = 113 placebo). No significant between-group differences were found for LOS (median 54 h for each group, difference = 0 h, 95% CI: -6, 8; p = 0.8), time receiving oxygen (azithromycin = 40 h, placebo = 35 h, group difference = 5 h, 95% CI: -8, 11; p = 0.7), day-21 symptom/signs, or rehospitalization within 6 months (azithromycin n = 31, placebo n = 25 infants, p = 0.2). Azithromycin reduced nasopharyngeal bacterial carriage (between-group difference 0.4 bacteria/child, 95% CI: 0.2, 0.6; p < 0.001), but had no significant effect upon virus detection rates. CONCLUSION Despite reducing nasopharyngeal bacterial carriage, three large once-weekly doses of azithromycin did not confer any benefit over placebo during the bronchiolitis illness or 6 months post hospitalization. Azithromycin should not be used routinely to treat infants hospitalized with bronchiolitis. CLINICAL TRIAL REGISTRATION The trial was registered with the Australian and New Zealand Clinical Trials Register: Clinical trials number: ACTRN1261000036099.

Collaboration


Dive into the Gabrielle B. McCallum's collaboration.

Top Co-Authors

Avatar

Anne B. Chang

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter S. Morris

Charles Darwin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Torzillo

Royal Prince Alfred Hospital

View shared research outputs
Top Co-Authors

Avatar

Amanda J. Leach

Charles Darwin University

View shared research outputs
Top Co-Authors

Avatar

Kim M. Hare

Charles Darwin University

View shared research outputs
Top Co-Authors

Avatar

Patricia C. Valery

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian M. Mackay

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge