Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gad Frankel is active.

Publication


Featured researches published by Gad Frankel.


Nature Reviews Microbiology | 2014

Citrobacter rodentium: infection, inflammation and the microbiota.

James W. Collins; Kristie M. Keeney; Valerie F. Crepin; Vijay A. K. Rathinam; Katherine A. Fitzgerald; B. Brett Finlay; Gad Frankel

Citrobacter rodentium is a mucosal pathogen of mice that shares several pathogenic mechanisms with enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC), which are two clinically important human gastrointestinal pathogens. Thus, C. rodentium has long been used as a model to understand the molecular basis of EPEC and EHEC infection in vivo. In this Review, we discuss recent studies in which C. rodentium has been used to study mucosal immunology, including the deregulation of intestinal inflammatory responses during bacteria-induced colitis and the role of the intestinal microbiota in mediating resistance to colonization by enteric pathogens. These insights should help to elucidate the roles of mucosal inflammatory responses and the microbiota in the virulence of enteric pathogens.


Nature | 2013

A type III effector antagonizes death receptor signalling during bacterial gut infection

Jaclyn S. Pearson; Sze Ong; Catherine L. Kennedy; Michelle Kelly; Keith S. Robinson; Tania Lung; Ashley Mansell; Patrice Riedmaier; Claire Oates; Ali Zaid; Sabrina Mühlen; Valerie F. Crepin; Oliver Marchès; Ching-Seng Ang; Nicholas A. Williamson; Lorraine A. O'Reilly; Aleksandra Bankovacki; Ueli Nachbur; Giuseppe Infusini; Andrew I. Webb; John Silke; Andreas Strasser; Gad Frankel; Elizabeth L. Hartland

Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Argu2009117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.


Trends in Microbiology | 2013

Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors

Benoit Raymond; Joanna C. Young; Mitchell Pallett; Robert G. Endres; Abigail Clements; Gad Frankel

Injection of effector proteins by a type III secretion system (T3SS) is a common infection strategy employed by many important human pathogens, including enteric Escherichia coli, Salmonella, Yersinia, and Shigella, to subvert cell signaling and host responses. In recent years, great advances have been made in understanding how the T3SS effectors function and execute the diverse infection strategies employed by these pathogens. In this review, we focus on effectors that subvert signaling pathways that impact on endosomal trafficking, cell survival, and innate immunity, particularly phagocytosis, nuclear factor-κB (NF-κB), and mitogen-activated protein (MAP) kinase pathways and the inflammasome.


Mbio | 2012

EspZ of Enteropathogenic and Enterohemorrhagic Escherichia coli Regulates Type III Secretion System Protein Translocation

Cedric N. Berger; Valerie F. Crepin; Kobi Baruch; Aurelie Mousnier; Ilan Rosenshine; Gad Frankel

ABSTRACT Translocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms that regulate the intracellular effector concentration. We present evidence that the effector EspZ controls T3SS effector translocation from enteropathogenic (EPEC) and enterohemorrhagic (EHEC) Escherichia coli. Consistently, an EPEC espZ mutant is highly cytotoxic. Following ectopic expression, we found that EspZ inhibited the formation of actin pedestals as it blocked the translocation of Tir, as well as other effectors, including Map and EspF. Moreover, during infection EspZ inhibited effector translocation following superinfection. Importantly, while EspZ of EHEC O157:H7 had a universal “translocation stop” activity, EspZ of EPEC inhibited effector translocation from typical EPEC strains but not from EHEC O157:H7 or its progenitor, atypical EPEC O55:H7. We found that the N and C termini of EspZ, which contains two transmembrane domains, face the cytosolic leaflet of the plasma membrane at the site of bacterial attachment, while the extracellular loop of EspZ is responsible for its strain-specific activity. These results show that EPEC and EHEC acquired a sophisticated mechanism to regulate the effector translocation. IMPORTANCE Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation. Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are important diarrheal pathogens responsible for significant morbidity and mortality in developing countries and the developed world, respectively. The virulence strategy of EPEC and EHEC revolves around a conserved type III secretion system (T3SS), which translocates bacterial proteins known as effectors directly into host cells. Previous studies have shown that when cells are infected in two waves with EPEC, the first wave inhibits effector translocation by the second wave in a T3SS-dependent manner, although the factor involved was not known. Importantly, we identified EspZ as the effector responsible for blocking protein translocation following a secondary EPEC infection. Interestingly, we found that while EspZ of EHEC can block protein translocation from both EPEC and EHEC strains, EPEC EspZ cannot block translocation from EHEC. These studies show that EPEC and EHEC employ a novel infection strategy to regulate T3SS translocation.


Nature microbiology | 2017

EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation.

Jaclyn S. Pearson; Sabrina Mühlen; Ueli Nachbur; Chi L. L. Pham; Ying Zhang; Joanne M. Hildebrand; Clare V. Oates; Tania Wong Fok Lung; Danielle J. Ingle; Laura F. Dagley; Aleksandra Bankovacki; Emma J. Petrie; Gunnar N. Schroeder; Valerie F. Crepin; Gad Frankel; Seth L. Masters; James E. Vince; James M. Murphy; Margaret Sunde; Andrew I. Webb; John Silke; Elizabeth L. Hartland

Cell death signalling pathways contribute to tissue homeostasis and provide innate protection from infection. Adaptor proteins such as receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3), TIR-domain-containing adapter-inducing interferon-β (TRIF) and Z-DNA-binding protein 1 (ZBP1)/DNA-dependent activator of IFN-regulatory factors (DAI) that contain receptor-interacting protein (RIP) homotypic interaction motifs (RHIM) play a key role in cell death and inflammatory signalling1–3. RHIM-dependent interactions help drive a caspase-independent form of cell death termed necroptosis4,5. Here, we report that the bacterial pathogen enteropathogenic Escherichia coli (EPEC) uses the type III secretion system (T3SS) effector EspL to degrade the RHIM-containing proteins RIPK1, RIPK3, TRIF and ZBP1/DAI during infection. This requires a previously unrecognized tripartite cysteine protease motif in EspL (Cys47, His131, Asp153) that cleaves within the RHIM of these proteins. Bacterial infection and/or ectopic expression of EspL leads to rapid inactivation of RIPK1, RIPK3, TRIF and ZBP1/DAI and inhibition of tumour necrosis factor (TNF), lipopolysaccharide or polyinosinic:polycytidylic acid (poly(I:C))-induced necroptosis and inflammatory signalling. Furthermore, EPEC infection inhibits TNF-induced phosphorylation and plasma membrane localization of mixed lineage kinase domain-like pseudokinase (MLKL). In vivo, EspL cysteine protease activity contributes to persistent colonization of mice by the EPEC-like mouse pathogen Citrobacter rodentium. The activity of EspL defines a family of T3SS cysteine protease effectors found in a range of bacteria and reveals a mechanism by which gastrointestinal pathogens directly target RHIM-dependent inflammatory and necroptotic signalling pathways.


Mbio | 2014

A New Method To Determine In Vivo Interactomes Reveals Binding of the Legionella pneumophila Effector PieE to Multiple Rab GTPases

Aurelie Mousnier; Gunnar N. Schroeder; Charlotte A. Stoneham; Ernest C. So; James A. Garnett; Lu Yu; Steve Matthews; Jyoti S. Choudhary; Elizabeth L. Hartland; Gad Frankel

ABSTRACT Legionella pneumophila, the causative agent of Legionnaires’ disease, uses the Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effectors into host cells, where they subvert host cell signaling. The function and host cell targets of most effectors remain unknown. PieE is a 69-kDa Dot/Icm effector containing three coiled-coil (CC) regions and 2 transmembrane (TM) helices followed by a fourth CC region. Here, we report that PieE dimerized by an interaction between CC3 and CC4. We found that ectopically expressed PieE localized to the endoplasmic reticulum (ER) and induced the formation of organized smooth ER, while following infection PieE localized to the Legionella-containing vacuole (LCV). To identify the physiological targets of PieE during infection, we established a new purification method for which we created an A549 cell line stably expressing the Escherichia coli biotin ligase BirA and infected the cells with L. pneumophila expressing PieE fused to a BirA-specific biotinylation site and a hexahistidine tag. Following tandem Ni2+ nitrilotriacetic acid (NTA) and streptavidin affinity chromatography, the effector-target complexes were analyzed by mass spectrometry. This revealed interactions of PieE with multiple host cell proteins, including the Rab GTPases 1a, 1b, 2a, 5c, 6a, 7, and 10. Binding of the Rab GTPases, which was validated by yeast two-hybrid binding assays, was mediated by the PieE CC1 and CC2. In summary, using a novel, highly specific strategy to purify effector complexes from infected cells, which is widely applicable to other pathogens, we identified PieE as a multidomain LCV protein with promiscuous Rab GTPase-binding capacity. IMPORTANCE The respiratory pathogen Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate more than 300 effector proteins into host cells. The function of most effectors in infection remains unknown. One of the bottlenecks for their characterization is the identification of target proteins. Frequently used in vitro approaches are not applicable to all effectors and suffer from high rates of false positives or missed interactions, as they are not performed in the context of an infection. Here, we determine key functional domains of the effector PieE and describe a new method to identify host cell targets under physiological infection conditions. Our approach, which is applicable to other pathogens, uncovered the interaction of PieE with several proteins involved in membrane trafficking, in particular Rab GTPases, revealing new details of the Legionella infection strategy and demonstrating the potential of this method to greatly advance our understanding of the molecular basis of infection. The respiratory pathogen Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate more than 300 effector proteins into host cells. The function of most effectors in infection remains unknown. One of the bottlenecks for their characterization is the identification of target proteins. Frequently used in vitro approaches are not applicable to all effectors and suffer from high rates of false positives or missed interactions, as they are not performed in the context of an infection. Here, we determine key functional domains of the effector PieE and describe a new method to identify host cell targets under physiological infection conditions. Our approach, which is applicable to other pathogens, uncovered the interaction of PieE with several proteins involved in membrane trafficking, in particular Rab GTPases, revealing new details of the Legionella infection strategy and demonstrating the potential of this method to greatly advance our understanding of the molecular basis of infection.


Infection and Immunity | 2015

Legionella pneumophila Effector LpdA Is a Palmitoylated Phospholipase D Virulence Factor

Gunnar N. Schroeder; Philipp Aurass; Clare V. Oates; Edward W. Tate; Elizabeth L. Hartland; Antje Flieger; Gad Frankel

ABSTRACT Legionella pneumophila is a bacterial pathogen that thrives in alveolar macrophages, causing a severe pneumonia. The virulence of L. pneumophila depends on its Dot/Icm type IV secretion system (T4SS), which delivers more than 300 effector proteins into the host, where they rewire cellular signaling to establish a replication-permissive niche, the Legionella-containing vacuole (LCV). Biogenesis of the LCV requires substantial redirection of vesicle trafficking and remodeling of intracellular membranes. In order to achieve this, several T4SS effectors target regulators of membrane trafficking, while others resemble lipases. Here, we characterized LpdA, a phospholipase D effector, which was previously proposed to modulate the lipid composition of the LCV. We found that ectopically expressed LpdA was targeted to the plasma membrane and Rab4- and Rab14-containing vesicles. Subcellular targeting of LpdA required a C-terminal motif, which is posttranslationally modified by S-palmitoylation. Substrate specificity assays showed that LpdA hydrolyzed phosphatidylinositol, -inositol-3- and -4-phosphate, and phosphatidylglycerol to phosphatidic acid (PA) in vitro. In HeLa cells, LpdA generated PA at vesicles and the plasma membrane. Imaging of different phosphatidylinositol phosphate (PIP) and organelle markers revealed that while LpdA did not impact on membrane association of various PIP probes, it triggered fragmentation of the Golgi apparatus. Importantly, although LpdA is translocated inefficiently into cultured cells, an L. pneumophila ΔlpdA mutant displayed reduced replication in murine lungs, suggesting that it is a virulence factor contributing to L. pneumophila infection in vivo.


Canadian Journal of Microbiology | 2015

Creating a customized intracellular niche: subversion of host cell signaling by legionella type IV secretion system effectors

Ernest C. So; Corinna Mattheis; Edward W. Tate; Gad Frankel; Gunnar N. Schroeder

The Gram-negative facultative intracellular pathogen Legionella pneumophila infects a wide range of different protozoa in the environment and also human alveolar macrophages upon inhalation of contaminated aerosols. Inside its hosts, it creates a defined and unique compartment, termed the Legionella-containing vacuole (LCV), for survival and replication. To establish the LCV, L. pneumophila uses its Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effector proteins into the host cell. Although it has become apparent in the past years that these effectors subvert a multitude of cellular processes and allow Legionella to take control of host cell vesicle trafficking, transcription, and translation, the exact function of the vast majority of effectors still remains unknown. This is partly due to high functional redundancy among the effectors, which renders conventional genetic approaches to elucidate their role ineffective. Here, we review the current knowledge about Legionella T4SS effectors, highlight open questions, and discuss new methods that promise to facilitate the characterization of T4SS effector functions in the future.


The EMBO Journal | 2017

Hierarchical protein targeting and secretion is controlled by an affinity switch in the type III secretion system of enteropathogenic Escherichia coli

Athina G Portaliou; Konstantinos C. Tsolis; Maria S. Loos; Vassileia Balabanidou; Josep Rayo; Alexandra Tsirigotaki; Valerie F. Crepin; Gad Frankel; Charalampos G. Kalodimos; Spyridoula Karamanou; Anastassios Economou

Type III secretion (T3S), a protein export pathway common to Gram‐negative pathogens, comprises a trans‐envelope syringe, the injectisome, with a cytoplasm‐facing translocase channel. Exported substrates are chaperone‐delivered to the translocase, EscV in enteropathogenic Escherichia coli, and cross it in strict hierarchical manner, for example, first “translocators”, then “effectors”. We dissected T3S substrate targeting and hierarchical switching by reconstituting them in vitro using inverted inner membrane vesicles. EscV recruits and conformationally activates the tightly membrane‐associated pseudo‐effector SepL and its chaperone SepD. This renders SepL a high‐affinity receptor for translocator/chaperone pairs, recognizing specific chaperone signals. In a second, SepD‐coupled step, translocators docked on SepL become secreted. During translocator secretion, SepL/SepD suppress effector/chaperone binding to EscV and prevent premature effector secretion. Disengagement of the SepL/SepD switch directs EscV to dedicated effector export. These findings advance molecular understanding of T3S and reveal a novel mechanism for hierarchical trafficking regulation in protein secretion channels.


Epidemiology and Infection | 2015

Defining pathogenic verocytotoxin-producing Escherichia coli (VTEC) from cases of human infection in the European Union, 2007–2010

Messens W; Bolton D; Gad Frankel; McLAUCHLIN J; Stefano Morabito; Oswald E; E. J. Threlfall

During 2007-2010, 13 545 confirmed human verocytotoxin (VT)-producing Escherichia coli (VTEC) infections were reported in the European Union, including 777 haemolytic uraemic syndrome (HUS) cases. Clinical manifestations were reported for 53% of cases, 64% of which presented with diarrhoea alone and 10% with HUS. Isolates from 85% of cases were not fully serotyped and could not be classified on the basis of the Karmali seropathotype concept. There is no single or combination of phenotypic or genetic marker(s) that fully define pathogenic VTEC. Isolates which contain the vtx2 (verocytotoxin 2) gene in combination with the eae (intimin-encoding) gene or aaiC (secreted protein of enteroaggregative E. coli) and aggR (plasmid-encoded regulator) genes have been associated with a higher risk of more severe illness. A molecular approach targeting genes encoding VT and other virulence determinants is thus proposed to allow an assessment of the potential severity of disease that may be associated with a given VTEC isolate.

Collaboration


Dive into the Gad Frankel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernest C. So

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Gordon Dougan

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge