Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gunnar N. Schroeder is active.

Publication


Featured researches published by Gunnar N. Schroeder.


Clinical Microbiology Reviews | 2008

Molecular Pathogenesis of Shigella spp.: Controlling Host Cell Signaling, Invasion, and Death by Type III Secretion

Gunnar N. Schroeder; Hubert Hilbi

SUMMARY Shigella spp. are gram-negative pathogenic bacteria that evolved from harmless enterobacterial relatives and may cause devastating diarrhea upon ingestion. Research performed over the last 25 years revealed that a type III secretion system (T3SS) encoded on a large plasmid is a key virulence factor of Shigella flexneri. The T3SS determines the interactions of S. flexneri with intestinal cells by consecutively translocating two sets of effector proteins into the target cells. Thus, S. flexneri controls invasion into EC, intra- and intercellular spread, macrophage cell death, as well as host inflammatory responses. Some of the translocated effector proteins show novel biochemical activities by which they intercept host cell signal transduction pathways. An understanding of the molecular mechanisms underlying Shigella pathogenesis will foster the development of a safe and efficient vaccine, which, in parallel with improved hygiene, should curb infections by this widespread pathogen.


Journal of Bacteriology | 2010

Legionella pneumophila Strain 130b Possesses a Unique Combination of Type IV Secretion Systems and Novel Dot/Icm Secretion System Effector Proteins

Gunnar N. Schroeder; Nicola K. Petty; Aurelie Mousnier; Clare R. Harding; Adam Vogrin; Bryan A. Wee; Norman K. Fry; Timothy G. Harrison; Hayley J. Newton; Nicholas R. Thomson; Scott A. Beatson; Gordon Dougan; Elizabeth L. Hartland; Gad Frankel

Legionella pneumophila is a ubiquitous inhabitant of environmental water reservoirs. The bacteria infect a wide variety of protozoa and, after accidental inhalation, human alveolar macrophages, which can lead to severe pneumonia. The capability to thrive in phagocytic hosts is dependent on the Dot/Icm type IV secretion system (T4SS), which translocates multiple effector proteins into the host cell. In this study, we determined the draft genome sequence of L. pneumophila strain 130b (Wadsworth). We found that the 130b genome encodes a unique set of T4SSs, namely, the Dot/Icm T4SS, a Trb-1-like T4SS, and two Lvh T4SS gene clusters. Sequence analysis substantiated that a core set of 107 Dot/Icm T4SS effectors was conserved among the sequenced L. pneumophila strains Philadelphia-1, Lens, Paris, Corby, Alcoy, and 130b. We also identified new effector candidates and validated the translocation of 10 novel Dot/Icm T4SS effectors that are not present in L. pneumophila strain Philadelphia-1. We examined the prevalence of the new effector genes among 87 environmental and clinical L. pneumophila isolates. Five of the new effectors were identified in 34 to 62% of the isolates, while less than 15% of the strains tested positive for the other five genes. Collectively, our data show that the core set of conserved Dot/Icm T4SS effector proteins is supplemented by a variable repertoire of accessory effectors that may partly account for differences in the virulences and prevalences of particular L. pneumophila strains.


Journal of Bacteriology | 2010

The Citrobacter rodentium Genome Sequence Reveals Convergent Evolution with Human Pathogenic Escherichia coli

Nicola K. Petty; Richard Bulgin; Valerie F. Crepin; Ana Cerdeño-Tárraga; Gunnar N. Schroeder; Michael A. Quail; Nicola Lennard; Craig Corton; Andrew Barron; Louise Clark; Ana Luisa Toribio; Julian Parkhill; Gordon Dougan; Gad Frankel; Nicholas R. Thomson

Citrobacter rodentium (formally Citrobacter freundii biotype 4280) is a highly infectious pathogen that causes colitis and transmissible colonic hyperplasia in mice. In common with enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), C. rodentium exploits a type III secretion system (T3SS) to induce attaching and effacing (A/E) lesions that are essential for virulence. Here, we report the fully annotated genome sequence of the 5.3-Mb chromosome and four plasmids harbored by C. rodentium strain ICC168. The genome sequence revealed key information about the phylogeny of C. rodentium and identified 1,585 C. rodentium-specific (without orthologues in EPEC or EHEC) coding sequences, 10 prophage-like regions, and 17 genomic islands, including the locus for enterocyte effacement (LEE) region, which encodes a T3SS and effector proteins. Among the 29 T3SS effectors found in C. rodentium are all 22 of the core effectors of EPEC strain E2348/69. In addition, we identified a novel C. rodentium effector, named EspS. C. rodentium harbors two type VI secretion systems (T6SS) (CTS1 and CTS2), while EHEC contains only one T6SS (EHS). Our analysis suggests that C. rodentium and EPEC/EHEC have converged on a common host infection strategy through access to a common pool of mobile DNA and that C. rodentium has lost gene functions associated with a previous pathogenic niche.


PLOS Pathogens | 2011

Salmonella bongori Provides Insights into the Evolution of the Salmonellae

Maria Fookes; Gunnar N. Schroeder; Gemma C. Langridge; Carlos J. Blondel; Caterina Mammina; Thomas Richard Connor; Helena M. B. Seth-Smith; Georgios S. Vernikos; Keith S. Robinson; Mandy Sanders; Nicola K. Petty; Robert A. Kingsley; Andreas J. Bäumler; Sean Paul Nuccio; Inés Contreras; Carlos A. Santiviago; Duncan J. Maskell; Paul A. Barrow; Tom J. Humphrey; Antonino Nastasi; Mark Roberts; Gad Frankel; Julian Parkhill; Gordon Dougan; Nicholas R. Thomson

The genus Salmonella contains two species, S. bongori and S. enterica. Compared to the well-studied S. enterica there is a marked lack of information regarding the genetic makeup and diversity of S. bongori. S. bongori has been found predominantly associated with cold-blooded animals, but it can infect humans. To define the phylogeny of this species, and compare it to S. enterica, we have sequenced 28 isolates representing most of the known diversity of S. bongori. This cross-species analysis allowed us to confidently differentiate ancestral functions from those acquired following speciation, which include both metabolic and virulence-associated capacities. We show that, although S. bongori inherited a basic set of Salmonella common virulence functions, it has subsequently elaborated on this in a different direction to S. enterica. It is an established feature of S. enterica evolution that the acquisition of the type III secretion systems (T3SS-1 and T3SS-2) has been followed by the sequential acquisition of genes encoding secreted targets, termed effectors proteins. We show that this is also true of S. bongori, which has acquired an array of novel effector proteins (sboA-L). All but two of these effectors have no significant S. enterica homologues and instead are highly similar to those found in enteropathogenic Escherichia coli (EPEC). Remarkably, SboH is found to be a chimeric effector protein, encoded by a fusion of the T3SS-1 effector gene sopA and a gene highly similar to the EPEC effector nleH from enteropathogenic E. coli. We demonstrate that representatives of these new effectors are translocated and that SboH, similarly to NleH, blocks intrinsic apoptotic pathways while being targeted to the mitochondria by the SopA part of the fusion. This work suggests that S. bongori has inherited the ancestral Salmonella virulence gene set, but has adapted by incorporating virulence determinants that resemble those employed by EPEC.


Cellular Microbiology | 2010

Binding to Na + /H + exchanger regulatory factor 2 (NHERF2) affects trafficking and function of the enteropathogenic Escherichia coli type III secretion system effectors Map, EspI and NleH

Eric Martinez; Gunnar N. Schroeder; Cedric N. Berger; Sau Fung Lee; Keith S. Robinson; Luminita Badea; Nandi Simpson; Randy A. Hall; Elizabeth L. Hartland; Valerie F. Crepin; Gad Frankel

Enteropathogenic Escherichia coli (EPEC) strains are diarrhoeal pathogens that use a type III secretion system to translocate effector proteins into host cells in order to colonize and multiply in the human gut. Map, EspI and NleH1 are conserved EPEC effectors that possess a C‐terminal class I PSD‐95/Disc Large/ZO‐1 (PDZ)‐binding motif. Using a PDZ array screen we identified Na+/H+ exchanger regulatory factor 2 (NHERF2), a scaffold protein involved in tethering and recycling ion channels in polarized epithelia that contains two PDZ domains, as a common target of Map, EspI and NleH1. Using recombinant proteins and co‐immunoprecipitation we confirmed that NHERF2 binds each of the effectors. We generated a HeLa cell line stably expressing HA‐tagged NHERF2 and found that Map, EspI and NleH1 colocalize and interact with intracellular NHERF2 via their C‐terminal PDZ‐binding motif. Overexpression of NHERF2 enhanced the formation and persistence of Map‐induced filopodia, accelerated the trafficking of EspI to the Golgi and diminished the anti‐apoptotic activity of NleH1. The binding of multiple T3SS effectors to a single scaffold protein is unique. Our data suggest that NHERF2 may act as a plasma membrane sorting site, providing a novel regulatory mechanism to control the intracellular spatial and temporal effector protein activity.


Journal of Biological Chemistry | 2013

The Legionella pneumophila Dot/Icm-secreted effector PlcC/CegC1 together with PlcA and PlcB promotes virulence and belongs to a novel zinc metallophospholipase C family present in bacteria and fungi

Philipp Aurass; Maren Schlegel; Omar Metwally; Clare R. Harding; Gunnar N. Schroeder; Gad Frankel; Antje Flieger

Background: It is unclear whether Legionella pneumophila possesses phospholipase C (PLC) activity and thereby generates 1,2-diacylglycerol. Results: L. pneumophila possesses three secreted enzymes with PLC activity, PlcA, PlcB, and PlcC, and a plcABC mutant was attenuated in host killing. Conclusion: L. pneumophila encodes three members of a novel PLC family contributing to virulence. Significance: We determined PLC activity for L. pneumophila and defined the characteristics of a novel PLC family present in Legionella, Pseudomonas, and fungi. Legionella pneumophila is a water-borne bacterium that causes pneumonia in humans. PlcA and PlcB are two previously defined L. pneumophila proteins with homology to the phosphatidylcholine-specific phospholipase C (PC-PLC) of Pseudomonas fluorescens. Additionally, we found that Lpg0012 shows similarity to PLCs and has been shown to be a Dot/Icm-injected effector, CegC1, which is designated here as PlcC. It remained unclear, however, whether these L. pneumophila proteins exhibit PLC activity. PlcC expressed in Escherichia coli hydrolyzed a broad phospholipid spectrum, including PC, phosphatidylglycerol (PG), and phosphatidylinositol. The addition of Zn2+ ions activated, whereas EDTA inhibited, PlcC-derived PLC activity. Protein homology search revealed that the three Legionella enzymes and P. fluorescens PC-PLC share conserved domains also present in uncharacterized fungal proteins. Fifteen conserved amino acids were essential for enzyme activity as identified via PlcC mutagenesis. Analysis of defined L. pneumophila knock-out mutants indicated Lsp-dependent export of PG-hydrolyzing PLC activity. PlcA and PlcB exhibited PG-specific activity and contain a predicted Sec signal sequence. In line with the reported requirement of host cell contact for Dot/Icm-dependent effector translocation, PlcC showed cell-associated PC-specific PLC activity after bacterial growth in broth. A PLC triple mutant, but not single or double mutants, exhibited reduced host killing in a Galleria mellonella infection model, highlighting the importance of the three PLCs in pathogenesis. In summary, we describe here a novel Zn2+-dependent PLC family present in Legionella, Pseudomonas, and fungi with broad substrate preference and function in virulence.


Cellular Microbiology | 2007

Cholesterol is required to trigger caspase-1 activation and macrophage apoptosis after phagosomal escape of Shigella

Gunnar N. Schroeder; Hubert Hilbi

Pro‐inflammatory macrophage apoptosis is pivotal in the aetiology of bacillary dysentery, an acute inflammatory diarrhoea caused by Shigella spp. S. flexneri triggers its uptake by macrophages, escapes the phagosome and kills the host cell by a cytotoxic pathway, which activates and requires caspase‐1 [interleukin (IL)‐1β‐converting enzyme] and releases mature IL‐1β. The bacterial type III‐secreted translocator/effector protein IpaB triggers cell death and directly binds to caspase‐1. Here, we demonstrate that in S. flexneri‐infected macrophages, activated caspase‐1 is present in the cytoplasm, the nucleus and on vesicular membranes. IpaB partitions with membrane and cytoplasmic fractions and colocalizes with activated caspase‐1 on the surface of bacteria, in the macrophage cytoplasm and on vesicular membranes. Macrophages treated with the cholesterol‐sequestering compound methyl‐β‐cyclodextrin (MCD) were depleted from cholesterol within minutes and were impaired for phagocytosis of S. flexneri. Consequently, cytotoxicity as determined by lactate dehydrogenase release was blocked. Interestingly, if MCD was added 15–30 min post infection, cytotoxicity, activation of caspase‐1, and apoptosis were inhibited, while phagocytosis of the bacteria, escape from the phagosome and type III secretion of IpaB was not affected. Inhibition of Shigella cytotoxicity by MCD coincided with a reduced association of IpaB to host cell membranes. Contrarily, the activation of caspase‐1 and cytotoxicity triggered by the K+/H+ antiport ionophore nigericin or by ATP was not affected or even increased by MCD. These results indicate that cholesterol is specifically required for caspase‐1 activation and apoptosis triggered by Shigella after the escape from phagosomes, and suggest that membrane association of IpaB contributes to the activation of caspase‐1.


Infection and Immunity | 2013

The Dot/Icm Effector SdhA Is Necessary for Virulence of Legionella pneumophila in Galleria mellonella and A/J Mice

Clare R. Harding; Charlotte A. Stoneham; Ralf Schuelein; Hayley J. Newton; Clare V. Oates; Elizabeth L. Hartland; Gunnar N. Schroeder; Gad Frankel

ABSTRACT Legionella pneumophila is an intracellular bacterium that resides within amoebae and macrophages in a specialized compartment termed the Legionella-containing vacuole (LCV). As well as providing an intracellular niche for replication, the LCV helps to prevent the release of bacterial components into the cytoplasm. Recognition of these components as danger signals by the host activates immune responses leading to clearance of the bacterium. Here, we examined the role of two important virulence factors of L. pneumophila, the potent danger signal flagellin and the translocated Dot/Icm type IVB secretion system effector SdhA, which is crucial to maintain LCV integrity, in the Galleria mellonella infection model. We demonstrate that flagellin expression does not contribute to virulence, replication, or induction of clearance mechanisms. Conversely, SdhA expression is important for virulence. We found that in the absence of SdhA, the LCV in hemocytes showed signs of instability and leakage. Furthermore, in contrast to wild-type L. pneumophila, a ΔsdhA mutant caused a transient depletion of hemocytes and reduced mortality. Analysis of the ΔsdhA mutant in the A/J mouse model also showed a significant replication defect. Together, our data underline the crucial importance of SdhA in infection across different model organisms.


Nature microbiology | 2017

EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation.

Jaclyn S. Pearson; Sabrina Mühlen; Ueli Nachbur; Chi L. L. Pham; Ying Zhang; Joanne M. Hildebrand; Clare V. Oates; Tania Wong Fok Lung; Danielle J. Ingle; Laura F. Dagley; Aleksandra Bankovacki; Emma J. Petrie; Gunnar N. Schroeder; Valerie F. Crepin; Gad Frankel; Seth L. Masters; James E. Vince; James M. Murphy; Margaret Sunde; Andrew I. Webb; John Silke; Elizabeth L. Hartland

Cell death signalling pathways contribute to tissue homeostasis and provide innate protection from infection. Adaptor proteins such as receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3), TIR-domain-containing adapter-inducing interferon-β (TRIF) and Z-DNA-binding protein 1 (ZBP1)/DNA-dependent activator of IFN-regulatory factors (DAI) that contain receptor-interacting protein (RIP) homotypic interaction motifs (RHIM) play a key role in cell death and inflammatory signalling1–3. RHIM-dependent interactions help drive a caspase-independent form of cell death termed necroptosis4,5. Here, we report that the bacterial pathogen enteropathogenic Escherichia coli (EPEC) uses the type III secretion system (T3SS) effector EspL to degrade the RHIM-containing proteins RIPK1, RIPK3, TRIF and ZBP1/DAI during infection. This requires a previously unrecognized tripartite cysteine protease motif in EspL (Cys47, His131, Asp153) that cleaves within the RHIM of these proteins. Bacterial infection and/or ectopic expression of EspL leads to rapid inactivation of RIPK1, RIPK3, TRIF and ZBP1/DAI and inhibition of tumour necrosis factor (TNF), lipopolysaccharide or polyinosinic:polycytidylic acid (poly(I:C))-induced necroptosis and inflammatory signalling. Furthermore, EPEC infection inhibits TNF-induced phosphorylation and plasma membrane localization of mixed lineage kinase domain-like pseudokinase (MLKL). In vivo, EspL cysteine protease activity contributes to persistent colonization of mice by the EPEC-like mouse pathogen Citrobacter rodentium. The activity of EspL defines a family of T3SS cysteine protease effectors found in a range of bacteria and reveals a mechanism by which gastrointestinal pathogens directly target RHIM-dependent inflammatory and necroptotic signalling pathways.


Mbio | 2014

A New Method To Determine In Vivo Interactomes Reveals Binding of the Legionella pneumophila Effector PieE to Multiple Rab GTPases

Aurelie Mousnier; Gunnar N. Schroeder; Charlotte A. Stoneham; Ernest C. So; James A. Garnett; Lu Yu; Steve Matthews; Jyoti S. Choudhary; Elizabeth L. Hartland; Gad Frankel

ABSTRACT Legionella pneumophila, the causative agent of Legionnaires’ disease, uses the Dot/Icm type IV secretion system (T4SS) to translocate more than 300 effectors into host cells, where they subvert host cell signaling. The function and host cell targets of most effectors remain unknown. PieE is a 69-kDa Dot/Icm effector containing three coiled-coil (CC) regions and 2 transmembrane (TM) helices followed by a fourth CC region. Here, we report that PieE dimerized by an interaction between CC3 and CC4. We found that ectopically expressed PieE localized to the endoplasmic reticulum (ER) and induced the formation of organized smooth ER, while following infection PieE localized to the Legionella-containing vacuole (LCV). To identify the physiological targets of PieE during infection, we established a new purification method for which we created an A549 cell line stably expressing the Escherichia coli biotin ligase BirA and infected the cells with L. pneumophila expressing PieE fused to a BirA-specific biotinylation site and a hexahistidine tag. Following tandem Ni2+ nitrilotriacetic acid (NTA) and streptavidin affinity chromatography, the effector-target complexes were analyzed by mass spectrometry. This revealed interactions of PieE with multiple host cell proteins, including the Rab GTPases 1a, 1b, 2a, 5c, 6a, 7, and 10. Binding of the Rab GTPases, which was validated by yeast two-hybrid binding assays, was mediated by the PieE CC1 and CC2. In summary, using a novel, highly specific strategy to purify effector complexes from infected cells, which is widely applicable to other pathogens, we identified PieE as a multidomain LCV protein with promiscuous Rab GTPase-binding capacity. IMPORTANCE The respiratory pathogen Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate more than 300 effector proteins into host cells. The function of most effectors in infection remains unknown. One of the bottlenecks for their characterization is the identification of target proteins. Frequently used in vitro approaches are not applicable to all effectors and suffer from high rates of false positives or missed interactions, as they are not performed in the context of an infection. Here, we determine key functional domains of the effector PieE and describe a new method to identify host cell targets under physiological infection conditions. Our approach, which is applicable to other pathogens, uncovered the interaction of PieE with several proteins involved in membrane trafficking, in particular Rab GTPases, revealing new details of the Legionella infection strategy and demonstrating the potential of this method to greatly advance our understanding of the molecular basis of infection. The respiratory pathogen Legionella pneumophila uses the Dot/Icm type IV secretion system to translocate more than 300 effector proteins into host cells. The function of most effectors in infection remains unknown. One of the bottlenecks for their characterization is the identification of target proteins. Frequently used in vitro approaches are not applicable to all effectors and suffer from high rates of false positives or missed interactions, as they are not performed in the context of an infection. Here, we determine key functional domains of the effector PieE and describe a new method to identify host cell targets under physiological infection conditions. Our approach, which is applicable to other pathogens, uncovered the interaction of PieE with several proteins involved in membrane trafficking, in particular Rab GTPases, revealing new details of the Legionella infection strategy and demonstrating the potential of this method to greatly advance our understanding of the molecular basis of infection.

Collaboration


Dive into the Gunnar N. Schroeder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon Dougan

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernest C. So

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge