Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaël Latour is active.

Publication


Featured researches published by Gaël Latour.


Biomedical Optics Express | 2012

In vivo structural imaging of the cornea by polarization-resolved second harmonic microscopy

Gaël Latour; Ivan Gusachenko; Laura Kowalczuk; Isabelle Lamarre; Marie-Claire Schanne-Klein

The transparency and mechanical strength of the cornea are related to the highly organized three-dimensional distribution of collagen fibrils. It is of great interest to develop specific and contrasted in vivo imaging tools to probe these collagenous structures, which is not available yet. Second Harmonic Generation (SHG) microscopy is a unique tool to reveal fibrillar collagen within unstained tissues, but backward SHG images of cornea fail to reveal any spatial features due to the nanometric diameter of stromal collagen fibrils. To overcome this limitation, we performed polarization-resolved SHG imaging, which is highly sensitive to the sub-micrometer distribution of anisotropic structures. Using advanced data processing, we successfully retrieved the orientation of the collagenous fibrils at each depth of human corneas, even in backward SHG homogenous images. Quantitative information was also obtained about the submicrometer heterogeneities of the fibrillar collagen distribution by measuring the SHG anisotropy. All these results were consistent with numerical simulation of the polarization-resolved SHG response of cornea. Finally, we performed in vivo SHG imaging of rat corneas and achieved structural imaging of corneal stroma without any labeling. Epi-detected polarization-resolved SHG imaging should extend to other organs and become a new diagnosis tool for collagen remodeling.


Optics Express | 2010

Polarization-resolved Second Harmonic microscopy in anisotropic thick tissues

Ivan Gusachenko; Gaël Latour; Marie-Claire Schanne-Klein

We thoroughly analyze the linear propagation effects that affect polarization-resolved Second Harmonic Generation imaging of thick anisotropic tissues such as collagenous tissues. We develop a theoretical model that fully accounts for birefringence and diattenuation along the excitation propagation, and polarization scrambling upon scattering of the harmonic signal. We obtain an excellent agreement with polarizationresolved SHG images at increasing depth within a rat-tail tendon for both polarizations of the forward SHG signal. Most notably, we observe interference fringes due to birefringence in the SHG depth profile when excited at π/4 angle from the tendon axis. We also measure artifactual decrease of ρ = Χxxx/Χxyy with depth due to diattenuation of the excitation. We therefore derive a method that proves reliable to determine both ρ and the tendon birefringence and diattenuation.


Nature Communications | 2014

Determination of collagen fibril size via absolute measurements of second-harmonic generation signals

Stéphane Bancelin; Carole Aimé; Ivan Gusachenko; Laura Kowalczuk; Gaël Latour; Thibaud Coradin; Marie-Claire Schanne-Klein

The quantification of collagen fibril size is a major issue for the investigation of pathological disorders associated with structural defects of the extracellular matrix. Second-harmonic generation microscopy is a powerful technique to characterize the macromolecular organization of collagen in unstained biological tissues. Nevertheless, due to the complex coherent building of this nonlinear optical signal, it has never been used to measure fibril diameter so far. Here we report absolute measurements of second-harmonic signals from isolated fibrils down to 30 nm diameter, via implementation of correlative second-harmonic-electron microscopy. Moreover, using analytical and numerical calculations, we demonstrate that the high sensitivity of this technique originates from the parallel alignment of collagen triple helices within fibrils and the subsequent constructive interferences of second-harmonic radiations. Finally, we use these absolute measurements as a calibration for ex vivo quantification of fibril diameter in the Descemets membrane of a diabetic rat cornea.


Optics Express | 2012

In situ 3D characterization of historical coatings and wood using multimodal nonlinear optical microscopy.

Gaël Latour; Jean-Philippe Echard; Marie E. P. Didier; Marie-Claire Schanne-Klein

We demonstrate multimodal nonlinear optical imaging of historical artifacts by combining Second Harmonic Generation (SHG) and Two-Photon Excited Fluorescence (2PEF) microscopies. We first identify the nonlinear optical response of materials commonly encountered in coatings of cultural heritage artifacts by analyzing one- and multi-layered model samples. We observe 2PEF signals from cochineal lake and sandarac and show that pigments and varnish films can be discriminated by exploiting their different emission spectral ranges as in luminescence linear spectroscopy. We then demonstrate SHG imaging of a filler, plaster, composed of bassanite particles which exhibit a non centrosymmetric crystal structure. We also show that SHG/2PEF imaging enables the visualization of wood microstructure through typically 60 µm-thick coatings by revealing crystalline cellulose (SHG signal) and lignin (2PEF signal) in the wood cell walls. Finally, in situ multimodal nonlinear imaging is demonstrated in a historical violin. SHG/2PEF imaging thus appears as a promising non-destructive and contactless tool for in situ 3D investigation of historical coatings and more generally for wood characterization and coating analysis at micrometer scale.


PLOS ONE | 2012

Hyperglycemia-Induced Abnormalities in Rat and Human Corneas: The Potential of Second Harmonic Generation Microscopy

Gaël Latour; Laura Kowalczuk; Michèle Savoldelli; Jean-Louis Bourges; Karsten Plamann; Francine Behar-Cohen; Marie-Claire Schanne-Klein

Background Second Harmonic Generation (SHG) microscopy recently appeared as an efficient optical imaging technique to probe unstained collagen-rich tissues like cornea. Moreover, corneal remodeling occurs in many diseases and precise characterization requires overcoming the limitations of conventional techniques. In this work, we focus on diabetes, which affects hundreds of million people worldwide and most often leads to diabetic retinopathy, with no early diagnostic tool. This study then aims to establish the potential of SHG microscopy for in situ detection and characterization of hyperglycemia-induced abnormalities in the Descemet’s membrane, in the posterior cornea. Methodology/Principal Findings We studied corneas from age-matched control and Goto-Kakizaki rats, a spontaneous model of type 2 diabetes, and corneas from human donors with type 2 diabetes and without any diabetes. SHG imaging was compared to confocal microscopy, to histology characterization using conventional staining and transmitted light microscopy and to transmission electron microscopy. SHG imaging revealed collagen deposits in the Descemet’s membrane of unstained corneas in a unique way compared to these gold standard techniques in ophthalmology. It provided background-free images of the three-dimensional interwoven distribution of the collagen deposits, with improved contrast compared to confocal microscopy. It also provided structural capability in intact corneas because of its high specificity to fibrillar collagen, with substantially larger field of view than transmission electron microscopy. Moreover, in vivo SHG imaging was demonstrated in Goto-Kakizaki rats. Conclusions/Significance Our study shows unambiguously the high potential of SHG microscopy for three-dimensional characterization of structural abnormalities in unstained corneas. Furthermore, our demonstration of in vivo SHG imaging opens the way to long-term dynamical studies. This method should be easily generalized to other structural remodeling of the cornea and SHG microscopy should prove to be invaluable for in vivo corneal pathological studies.


Journal of The Mechanical Behavior of Biomedical Materials | 2016

Simultaneous microstructural and mechanical characterization of human corneas at increasing pressure

Aurélie Benoit; Gaël Latour; Schanne-Klein Marie-Claire; Jean-Marc Allain

The cornea, through its shape, is the main contributor to the eye׳s focusing power. Pathological alterations of the cornea strongly affect the eye power. To improve treatments, complex biomechanical models have been developed based on the architecture and mechanical properties of the collagen network in the stroma, the main layer of the cornea. However, direct investigations of the structure of the stroma, as well as its link to the mechanical response, remained limited. We propose here an original set up, associating nonlinear optical imaging and mechanical testing. By using polarization resolved Second Harmonic signals, we simultaneously quantified micrometer (orientation of the collagen lamellae) and nanometer (local disorder within lamellae) scale corneal organization. We showed that the organization of the lamellae changes along the stroma thickness. Then, we measured simultaneously the deformation on the epithelial side of the cornea and the reorientation of the collagen lamellae for increasing intraocular pressure levels, from physiological ones to pathological ones. We showed that the observed deformation is not correlated to initial orientation, but to the reorganization of the lamellae in the stroma. Our results, by providing a direct multi-scale observation, will be useful for the development of more accurate biomechanical models.


Scientific Reports | 2016

Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments.

Gaël Latour; Laurianne Robinet; Alexandre Dazzi; François Portier; Ariane Deniset-Besseau; Marie-Claire Schanne-Klein

This paper presents the correlative imaging of collagen denaturation by nonlinear optical microscopy (NLO) and nanoscale infrared (IR) spectroscopy to obtain morphological and chemical information at different length scales. Such multiscale correlated measurements are applied to the investigation of ancient parchments, which are mainly composed of dermal fibrillar collagen. The main issue is to characterize gelatinization, the ultimate and irreversible alteration corresponding to collagen denaturation to gelatin, which may also occur in biological tissues. Key information about collagen and gelatin signatures is obtained in parchments and assessed by characterizing the denaturation of pure collagen reference samples. A new absorbing band is observed near the amide I band in the IR spectra, correlated to the onset of fluorescence signals in NLO images. Meanwhile, a strong decrease is observed in Second Harmonic signals, which are a structural probe of the fibrillar organization of the collagen at the micrometer scale. NLO microscopy therefore appears as a powerful tool to reveal collagen degradation in a non-invasive way. It should provide a relevant method to assess or monitor the condition of collagen-based materials in museum and archival collections and opens avenues for a broad range of applications regarding this widespread biological material.


Optics Express | 2015

Theoretical, numerical and experimental study of geometrical parameters that affect anisotropy measurements in polarization-resolved SHG microscopy.

Claire Teulon; Ivan Gusachenko; Gaël Latour; Marie-Claire Schanne-Klein

Polarization-resolved second harmonic generation (P-SHG) microscopy is an efficient imaging modality for in situ observation of biopolymers structure in tissues, providing information about their mean in-plane orientation and their molecular structure and 3D distribution. Nevertheless, P-SHG signal build-up in a strongly focused regime is not throroughly understood yet, preventing reliable and reproducible measurements. In this study, theoretical analysis, vectorial numerical simulations and experiments are performed to understand how geometrical parameters, such as excitation and collection numerical apertures and detection direction, affect P-SHG imaging in homogeneous collagen tissues. A good agreement is obtained in tendon and cornea, showing that detection geometry significantly affects the SHG anisotropy measurements, but not the measurements of collagen in-plane orientation.


Scientific Reports | 2017

Stromal striae: a new insight into corneal physiology and mechanics

Kate Grieve; Djida Ghoubay; Cristina Georgeon; Gaël Latour; Amir Nahas; Karsten Plamann; Caroline Crotti; Romain Bocheux; Marie Borderie; Thu-Mai Nguyen; Felipe Andreiuolo; Marie-Claire Schanne-Klein; V. Borderie

We uncover the significance of a previously unappreciated structural feature in corneal stroma, important to its biomechanics. Vogt striae are a known clinical indicator of keratoconus, and consist of dark, vertical lines crossing the corneal depth. However we detected stromal striae in most corneas, not only keratoconus. We observed striae with multiple imaging modalities in 82% of 118 human corneas, with pathology-specific differences. Striae generally depart from anchor points at Descemet’s membrane in the posterior stroma obliquely in a V-shape, whereas in keratoconus, striae depart vertically from posterior toward anterior stroma. Optical coherence tomography shear wave elastography showed discontinuity of rigidity, and second harmonic generation and scanning electron microscopies showed undulation of lamellae at striae locations. Striae visibility decreased beyond physiological pressure and increased beyond physiological hydration. Immunohistology revealed striae to predominantly contain collagen VI, lumican and keratocan. The role of these regions of collagen VI linking sets of lamellae may be to absorb increases in intraocular pressure and external shocks.


Frontiers in Optics | 2013

Optimization of Nonlinear Multimodal Microendoscopy Based on DCF and GRIN Lenses for Optical Biopsy

Hussein Hamzeh; Claire Lefort; Frédéric Louradour; Gaël Latour; Frédéric Pain; Darine Abi Haidar

Nonlinear endomicroscopic design based on GRIN lens and a double clad fiber was optimized for pulse delivery, high fluorescence collection and resolution. Grism-based stretcher compensated efficiently for linear and nonlinear effects in our system.

Collaboration


Dive into the Gaël Latour's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivan Gusachenko

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aurélie Benoit

Arts et Métiers ParisTech

View shared research outputs
Top Co-Authors

Avatar

Jean-Louis Bourges

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Teulon

Université Paris-Saclay

View shared research outputs
Researchain Logo
Decentralizing Knowledge