Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaetano Malgieri is active.

Publication


Featured researches published by Gaetano Malgieri.


Amino Acids | 2015

Investigating the inclusion properties of aromatic amino acids complexing beta-cyclodextrins in model peptides

Jolanda Valentina Caso; Luigi Russo; Maddalena Palmieri; Gaetano Malgieri; Stefania Galdiero; Annarita Falanga; Carla Isernia; Rosa Iacovino

Cyclodextrins are commonly used as complexing agents in biological, pharmaceutical, and industrial applications since they have an effect on protein thermal and proteolytic stability, refolding yields, solubility, and taste masking. β-cyclodextrins (β-CD), because of their cavity size are a perfectly suited complexing agent for many common guest moieties. In the case of peptide-cyclodextrin and protein-cyclodextrin host–guest complexes the aromatic amino acids are reported to be the principal responsible of the interaction. For these reasons, we have investigated the inclusion properties of nine designed tripeptides, obtained permuting the position of two l-alanines (Ala, A) with that of one l-tryptophan (Trp, W), l-phenylalanine (Phe, F), or l-tyrosine (Tyr, Y), respectively. Interestingly, the position of the aromatic side-chain in the sequence appears to modulate the β-CD:peptide binding constants, determined via UV–Vis and NMR spectroscopy, which in turn assumes values higher than those reported for the single amino acid. The tripeptides containing a tyrosine showed the highest binding constants, with the central position in the Ac-AYA-NH2 peptide becoming the most favorite for the interaction. A combined NMR and Molecular Docking approach permitted to build detailed complex models, highlighting the stabilizing interactions of the neighboring amino acids backbone atoms with the upper rim of the β-CD.


Chemistry: A European Journal | 2011

The inorganic perspective of nerve growth factor: interactions of Cu2+ and Zn2+ with the N-terminus fragment of nerve growth factor encompassing the recognition domain of the TrkA receptor.

Alessio Travaglia; Giuseppe Arena; Roberto Fattorusso; Carla Isernia; Diego La Mendola; Gaetano Malgieri; Vincenzo Giuseppe Nicoletti; Enrico Rizzarelli

There is a significant overlap between brain areas with Zn(2+) and Cu(2+) pathological dys-homeostasis and those in which the nerve growth factor (NGF) performs its biological role. The protein NGF is necessary for the development and maintenance of the sympathetic and sensory nervous systems. Its flexible N-terminal region has been shown to be a critical domain for TrkA receptor binding and activation. Computational analyses show that Zn(2+) and Cu(2+) form pentacoordinate complexes involving both the His4 and His8 residues of the N-terminal domain of one monomeric unit and the His84 and Asp105 residues of the other monomeric unit of the NGF active dimer. To date, neither experimental data on the coordination features have been reported, nor has one of the hypotheses according to which Zn(2+) and Cu(2+) may have different binding environments or the Ser1 α-amino group could be involved in coordination been supported. The peptide fragment, encompassing the 1-14 sequence of the human NGF amino-terminal domain (NGF(1-14)), blocked at the C terminus, was synthesised and its Cu(2+) and Zn(2+) complexes characterized by means of potentiometric and spectroscopic (UV/Vis, CD, NMR, and EPR) techniques. The N-terminus-acetylated form of NGF(1-14) was also investigated to evaluate the involvement of the Ser1 α-amino group in metal-ion coordination. Our results demonstrate that the amino group is the first anchoring site for Cu(2+) and is involved in Zn(2+) coordination at physiological pH. Finally, a synergic proliferative activity of both NGF(1-14) and the whole protein on SHSY5Y neuroblastoma cell line was found after treatment in the presence of Cu(2+). This effect was not observed after treatment with the N-acetylated peptide fragment, demonstrating a functional involvement of the N-terminal amino group in metal binding and peptide activity.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The prokaryotic Cys2His2 zinc-finger adopts a novel fold as revealed by the NMR structure of Agrobacterium tumefaciens Ros DNA-binding domain.

Gaetano Malgieri; Luigi Russo; Sabrina Esposito; Ilaria Baglivo; Laura Zaccaro; Emilia Pedone; Benedetto Di Blasio; Carla Isernia; Paolo V. Pedone; Roberto Fattorusso

The first putative prokaryotic Cys2His2 zinc-finger domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens, indicating that the Cys2His2 zinc-finger domain, originally thought to be confined to the eukaryotic kingdom, could be widespread throughout the living kingdom from eukaryotic, both animal and plant, to prokaryotic. In this article we report the NMR solution structure of Ros DNA-binding domain (Ros87), providing 79 structural characterization of a prokaryotic Cys2His2 zinc-finger domain. The NMR structure of Ros87 shows that the putative prokaryotic Cys2His2 zinc-finger sequence is indeed part of a significantly larger zinc-binding globular domain that possesses a novel protein fold very different from the classical fold reported for the eukaryotic classical zinc-finger. The Ros87 globular domain consists of 58 aa (residues 9–66), is arranged in a βββαα topology, and is stabilized by an extensive 15-residue hydrophobic core. A backbone dynamics study of Ros87, based on 15N R1, 15N R2, and heteronuclear 15N-{1H}-NOE measurements, has further confirmed that the globular domain is uniformly rigid and flanked by two flexible tails. Mapping of the amino acids necessary for the DNA binding onto Ros87 structure reveals the protein surface involved in the DNA recognition mechanism of this new zinc-binding protein domain.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains

Ilaria Baglivo; Luigi Russo; Sabrina Esposito; Gaetano Malgieri; Mario Renda; Antonio Salluzzo; Benedetto Di Blasio; Carla Isernia; Roberto Fattorusso; Paolo V. Pedone

The recent characterization of the prokaryotic Cys2His2 zinc-finger domain, identified in Ros protein from Agrobacterium tumefaciens, has demonstrated that, although possessing a similar zinc coordination sphere, this domain is structurally very different from its eukaryotic counterpart. A search in the databases has identified ≈300 homologues with a high sequence identity to the Ros protein, including the amino acids that form the extensive hydrophobic core in Ros. Surprisingly, the Cys2His2 zinc coordination sphere is generally poorly conserved in the Ros homologues, raising the question of whether the zinc ion is always preserved in these proteins. Here, we present a functional and structural study of a point mutant of Ros protein, Ros56–142C82D, in which the second coordinating cysteine is replaced by an aspartate, 5 previously-uncharacterized representative Ros homologues from Mesorhizobium loti, and 2 mutants of the homologues. Our results indicate that the prokaryotic zinc-finger domain, which in Ros protein tetrahedrally coordinates Zn(II) through the typical Cys2His2 coordination, in Ros homologues can either exploit a CysAspHis2 coordination sphere, previously never described in DNA binding zinc finger domains to our knowledge, or lose the metal, while still preserving the DNA-binding activity. We demonstrate that this class of prokaryotic zinc-finger domains is structurally very adaptable, and surprisingly single mutations can transform a zinc-binding domain into a nonzinc-binding domain and vice versa, without affecting the DNA-binding ability. In light of our findings an evolutionary link between the prokaryotic and eukaryotic zinc-finger domains, based on bacteria-to-eukaryota horizontal gene transfer, is discussed.


Biochemistry | 2012

Structure and orientation of the gH625-644 membrane interacting region of herpes simplex virus type 1 in a membrane mimetic system.

Stefania Galdiero; Luigi Russo; Annarita Falanga; Marco Cantisani; Mariateresa Vitiello; Roberto Fattorusso; Gaetano Malgieri; Massimiliano Galdiero; Carla Isernia

Glycoprotein H (gH) of the herpes simplex virus type 1 is involved in the complex mechanism of membrane fusion of the viral envelope with host cells. The virus requires four glycoproteins (gB, gD, gH, gL) to execute fusion and the role played by gH remains mysterious. Mutational studies have revealed several regions of gH ectodomain required for fusion and identified the segment from amino acid 625 to 644 as the most fusogenic region. Here, we studied the behavior in a membrane-mimicking DPC micellar environment of a peptide encompassing this region (gH625-644) and determined its NMR solution structure and its orientation within the micelles.


Biochimica et Biophysica Acta | 2013

Design, structural and functional characterization of a Temporin-1b analog active against Gram-negative bacteria

Concetta Avitabile; Fortuna Netti; Giuseppina Orefice; Maddalena Palmieri; Nunzia Nocerino; Gaetano Malgieri; Luca Domenico D'Andrea; Rosanna Capparelli; Roberto Fattorusso; Alessandra Romanelli

BACKGROUND Temporins are small antimicrobial peptides secreted by the Rana temporaria showing mainly activity against Gram-positive bacteria. However, different members of the temporin family, such as Temporin B, act in synergy also against Gram-negative bacteria. With the aim to develop a peptide with a wide spectrum of antimicrobial activity we designed and analyzed a series of Temporin B analogs. METHODS Peptides were initially obtained by Ala scanning on Temporin B sequence; antimicrobial activity tests allowed to identify the TB_G6A sequence, which was further optimized by increasing the peptide positive charge (TB_KKG6A). Interactions of this active peptide with the LPS of E. coli were investigated by CD, fluorescence and NMR. RESULTS TB_KKG6A is active against Gram-positive and Gram-negative bacteria at low concentrations. The peptide strongly interacts with the LPS of Gram-negative bacteria and folds upon interaction into a kinked helix. CONCLUSION Our results show that it is possible to widen the activity spectrum of an antimicrobial peptide by subtle changes of the primary structure. TB_KKG6A, having a simple composition, a broad spectrum of antimicrobial activity and a very low hemolytic activity, is a promising candidate for the design of novel antimicrobial peptides. GENERAL SIGNIFICANCE The activity of antimicrobial peptides is strongly related to the ability of the peptide to interact and break the bacterial membrane. Our studies on TB_KKG6A indicate that efficient interactions with LPS can be achieved when the peptide is not perfectly amphipathic, since this feature seems to help the toroidal pore formation process.


PLOS ONE | 2012

γ Sulphate PNA (PNA S): highly selective DNA binding molecule showing promising antigene activity.

Concetta Avitabile; Loredana Moggio; Gaetano Malgieri; Domenica Capasso; Sonia Di Gaetano; Michele Saviano; Carlo Pedone; Alessandra Romanelli

Peptide Nucleic Acids (PNAs), nucleic acid analogues showing high stability to enzyme degradation and strong affinity and specificity of binding toward DNA and RNA are widely investigated as tools to interfere in gene expression. Several studies have been focused on PNA analogues with modifications on the backbone and bases in the attempt to overcome solubility, uptake and aggregation issues. γ PNAs, PNA derivatives having a substituent in the γ position of the backbone show interesting properties in terms of secondary structure and affinity of binding toward complementary nucleic acids. In this paper we illustrate our results obtained on new analogues, bearing a sulphate in the γ position of the backbone, developed to be more DNA-like in terms of polarity and charge. The synthesis of monomers and oligomers is described. NMR studies on the conformational properties of monomers and studies on the secondary structure of single strands and triplexes are reported. Furthermore the hybrid stability and the effect of mismatches on the stability have also been investigated. Finally, the ability of the new analogue to work as antigene, interfering with the transcription of the ErbB2 gene on a human cell line overexpressing ErbB2 (SKBR3), assessed by FACS and qPCR, is described.


International Journal of Molecular Sciences | 2013

β-Cyclodextrin Inclusion Complex to Improve Physicochemical Properties of Pipemidic Acid: Characterization and Bioactivity Evaluation

Rosa Iacovino; Filomena Rapuano; Jolanda Valentina Caso; Agostino Russo; Margherita Lavorgna; Chiara Russo; Marina Isidori; Luigi Russo; Gaetano Malgieri; Carla Isernia

The aptitude of cyclodextrins (CDs) to form host-guest complexes has prompted an increase in the development of new drug formulations. In this study, the inclusion complexes of pipemidic acid (HPPA), a therapeutic agent for urinary tract infections, with native β-CD were prepared in solid state by kneading method and confirmed by FT-IR and 1H NMR. The inclusion complex formation was also characterized in aqueous solution at different pH via UV-Vis titration and phase solubility studies obtaining the stability constant. The 1:1 stoichiometry was established by a Job plot and the inclusion mechanism was clarified using docking experiments. Finally, the antibacterial activity of HPPA and its inclusion complex was tested on P. aeruginosa, E. coli and S. aureus to determine the respective EC50s and EC90s. The results showed that the antibacterial activity of HPPA:β-CD against E. coli and S. aureus is higher than that of HPPA. Furthermore, HPPA and HPPA:β-CD, tested on human hepatoblastoma HepG2 and MCF-7 cell lines by MTT assay, exhibited, for the first time, antitumor activities, and the complex revealed a higher activity than that of HPPA. The use of β-CD allows an increase in the aqueous solubility of the drug, its bioavailability and then its bioactivity.


Chemistry: A European Journal | 2011

Zinc(II) Complexes of Ubiquitin: Speciation, Affinity and Binding Features

Giuseppe Arena; Roberto Fattorusso; Giuseppe Grasso; Giuseppa Ida Grasso; Carla Isernia; Gaetano Malgieri; Danilo Milardi; Enrico Rizzarelli

Intraneuronal inclusions consisting of hypermetallated, (poly-)ubiquitinated proteins are a hallmark of neurodegeneration. To highlight the possible role played by metal ions in the dysfunction of the ubiquitin-proteasome system, here we report on zinc(II)/ubiquitin binding in terms of affinity constants, speciation, preferential binding sites and effects on protein stability and self-assembly. Potentiometric titrations allowed us to establish that at neutral pH only two species, ZnUb and Zn(2)Ub, are present in solution, in line with ESI-MS data. A change in the diffusion coefficient of ubiquitin was observed by NMR DOSY experiments after addition of Zn(II) ions, and thus indicates metal-promoted formation of protein assemblies. Analysis of (1)H, (15)N, (13)Cα and (13)CO chemical-shift perturbation after equimolar addition of Zn(II) ions to ubiquitin outlined two different metal-binding modes. The first involves a dynamic equilibrium in which zinc(II) is shared between a region including Met1, Gln2, Ile3, Phe4, Thr12, Leu15, Glu16, Val17, Glu18, Ile61 and Gln62 residues, which represent a site already described for copper binding, and a domain comprising Ile23, Glu24, Lys27, Ala28, Gln49, Glu51, Asp52, Arg54 and Thr55 residues. A second looser binding mode is centred on His68. Differential scanning calorimetry evidenced that addition of increasing amounts of Zn(II) ions does not affect protein thermal stability; rather it influences the shape of thermograms because of the increased propensity of ubiquitin to self-associate. The results presented here indicate that Zn(II) ions may interact with specific regions of ubiquitin and promote protein-protein contacts.


Journal of Inorganic Biochemistry | 2014

Deciphering the zinc coordination properties of the prokaryotic zinc finger domain: The solution structure characterization of Ros87 H42A functional mutant

Maddalena Palmieri; Luigi Russo; Gaetano Malgieri; Sabrina Esposito; Ilaria Baglivo; Alessia Rivellino; Biancamaria Farina; Ivan de Paola; Laura Zaccaro; Danilo Milardi; Carla Isernia; Paolo V. Pedone; Roberto Fattorusso

The zinc coordination sphere in prokaryotic zinc finger domain is extremely versatile and influences the stability and the folding property of the domain. Of a particular interest is the fourth zinc coordinating position, which is frequently occupied by two successive histidines, both able to coordinate the metal ion. To clarify their structural and functional role we report the NMR solution structure and the dynamics behavior of Ros87 H42A, which is a functional mutant of Ros87, the DNA binding domain of the Ros protein containing a prokaryotic Cys2His2 zinc finger domain. The structural analysis indicates that reducing the spacer among the two coordinating histidines from 4 (among His37 and His42) amino acids to 3 (among His37 and His41) increases the helicity of the first α-helix. At the same time, the second helix appears more mobile in the μs-ms timescale and the hydrophobic core is reduced. These data explain the high frequency of three-residue His spacers in the eukaryotic zinc finger domain and their absence in the prokaryotic counterpart. Furthermore, the structural comparison shows that the second coordination position is more sensitive to H42A mutation with respect to the first and the third position, providing the rationale of the high variability of the second and the fourth zinc coordinating position in Ros homologs, which adopt different metal coordination but preserve similar tertiary structures and DNA binding activities. Finally, H/D exchange measurements and NMR thermal unfolding analysis indicate that this mutant likely unfolds via a different mechanism with respect to the wild-type.

Collaboration


Dive into the Gaetano Malgieri's collaboration.

Top Co-Authors

Avatar

Roberto Fattorusso

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Carla Isernia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Ilaria Baglivo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luigi Russo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maddalena Palmieri

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Paolo V. Pedone

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Sabrina Esposito

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luigi Russo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Rosa Iacovino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge