Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilaria Baglivo is active.

Publication


Featured researches published by Ilaria Baglivo.


Molecular Cell | 2011

In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions.

Simon Quenneville; Gaetano Verde; Andrea Corsinotti; Adamandia Kapopoulou; Johan Jakobsson; Sandra Offner; Ilaria Baglivo; Paolo V. Pedone; Giovanna Grimaldi; Andrea Riccio; Didier Trono

Summary The maintenance of H3K9 and DNA methylation at imprinting control regions (ICRs) during early embryogenesis is key to the regulation of imprinted genes. Here, we reveal that ZFP57, its cofactor KAP1, and associated effectors bind selectively to the H3K9me3-bearing, DNA-methylated allele of ICRs in ES cells. KAP1 deletion induces a loss of heterochromatin marks at ICRs, whereas deleting ZFP57 or DNMTs leads to ICR DNA demethylation. Accordingly, we find that ZFP57 and KAP1 associated with DNMTs and hemimethylated DNA-binding NP95. Finally, we identify the methylated TGCCGC hexanucleotide as the motif that is recognized by ZFP57 in all ICRs and in several tens of additional loci, several of which are at least ZFP57-dependently methylated in ES cells. These results significantly advance our understanding of imprinting and suggest a general mechanism for the protection of specific loci against the wave of DNA demethylation that affects the mammalian genome during early embryogenesis.


Journal of Biological Chemistry | 2007

Critical DNA Binding Interactions of the Insulator Protein CTCF A SMALL NUMBER OF ZINC FINGERS MEDIATE STRONG BINDING, AND A SINGLE FINGER-DNA INTERACTION CONTROLS BINDING AT IMPRINTED LOCI

Mario Renda; Ilaria Baglivo; Bonnie Burgess-Beusse; Sabrina Esposito; Roberto Fattorusso; Gary Felsenfeld; Paolo V. Pedone

The DNA-binding protein CTCF (CCCTC binding factor) mediates enhancer blocking insulation at sites throughout the genome and plays an important role in regulating allele-specific expression at the Igf2/H19 locus and at other imprinted loci. Evidence is also accumulating that CTCF is involved in large scale organization of genomic chromatin. Although CTCF has 11 zinc fingers, we show here that only 4 of these are essential to strong binding and that they recognize a core 12-bp DNA sequence common to most CTCF sites. By deleting individual fingers and mutating individual sites, we determined the orientation of binding. Furthermore, we were able to identify the specific finger and its point of DNA interaction that are responsible for the loss of CTCF binding when CpG residues are methylated in the imprinted Igf2/H19 locus. This single interaction appears to be critical for allele-specific binding and insulation by CTCF.


Proceedings of the National Academy of Sciences of the United States of America | 2007

The prokaryotic Cys2His2 zinc-finger adopts a novel fold as revealed by the NMR structure of Agrobacterium tumefaciens Ros DNA-binding domain.

Gaetano Malgieri; Luigi Russo; Sabrina Esposito; Ilaria Baglivo; Laura Zaccaro; Emilia Pedone; Benedetto Di Blasio; Carla Isernia; Paolo V. Pedone; Roberto Fattorusso

The first putative prokaryotic Cys2His2 zinc-finger domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens, indicating that the Cys2His2 zinc-finger domain, originally thought to be confined to the eukaryotic kingdom, could be widespread throughout the living kingdom from eukaryotic, both animal and plant, to prokaryotic. In this article we report the NMR solution structure of Ros DNA-binding domain (Ros87), providing 79 structural characterization of a prokaryotic Cys2His2 zinc-finger domain. The NMR structure of Ros87 shows that the putative prokaryotic Cys2His2 zinc-finger sequence is indeed part of a significantly larger zinc-binding globular domain that possesses a novel protein fold very different from the classical fold reported for the eukaryotic classical zinc-finger. The Ros87 globular domain consists of 58 aa (residues 9–66), is arranged in a βββαα topology, and is stabilized by an extensive 15-residue hydrophobic core. A backbone dynamics study of Ros87, based on 15N R1, 15N R2, and heteronuclear 15N-{1H}-NOE measurements, has further confirmed that the globular domain is uniformly rigid and flanked by two flexible tails. Mapping of the amino acids necessary for the DNA binding onto Ros87 structure reveals the protein surface involved in the DNA recognition mechanism of this new zinc-binding protein domain.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains

Ilaria Baglivo; Luigi Russo; Sabrina Esposito; Gaetano Malgieri; Mario Renda; Antonio Salluzzo; Benedetto Di Blasio; Carla Isernia; Roberto Fattorusso; Paolo V. Pedone

The recent characterization of the prokaryotic Cys2His2 zinc-finger domain, identified in Ros protein from Agrobacterium tumefaciens, has demonstrated that, although possessing a similar zinc coordination sphere, this domain is structurally very different from its eukaryotic counterpart. A search in the databases has identified ≈300 homologues with a high sequence identity to the Ros protein, including the amino acids that form the extensive hydrophobic core in Ros. Surprisingly, the Cys2His2 zinc coordination sphere is generally poorly conserved in the Ros homologues, raising the question of whether the zinc ion is always preserved in these proteins. Here, we present a functional and structural study of a point mutant of Ros protein, Ros56–142C82D, in which the second coordinating cysteine is replaced by an aspartate, 5 previously-uncharacterized representative Ros homologues from Mesorhizobium loti, and 2 mutants of the homologues. Our results indicate that the prokaryotic zinc-finger domain, which in Ros protein tetrahedrally coordinates Zn(II) through the typical Cys2His2 coordination, in Ros homologues can either exploit a CysAspHis2 coordination sphere, previously never described in DNA binding zinc finger domains to our knowledge, or lose the metal, while still preserving the DNA-binding activity. We demonstrate that this class of prokaryotic zinc-finger domains is structurally very adaptable, and surprisingly single mutations can transform a zinc-binding domain into a nonzinc-binding domain and vice versa, without affecting the DNA-binding ability. In light of our findings an evolutionary link between the prokaryotic and eukaryotic zinc-finger domains, based on bacteria-to-eukaryota horizontal gene transfer, is discussed.


Biopolymers | 2011

Zinc to cadmium replacement in the A. thaliana SUPERMAN Cys2His2 zinc finger induces structural rearrangements of typical DNA base determinant positions

Gaetano Malgieri; Laura Zaccaro; Marilisa Leone; Enrico Bucci; Sabrina Esposito; Ilaria Baglivo; Annarita Del Gatto; Luigi Russo; Roberto Scandurra; Paolo V. Pedone; Roberto Fattorusso; Carla Isernia

Among heavy metals, whose toxicity cause a steadily increasing of environmental pollution, cadmium is of special concern due to its relatively high mobility in soils and potential toxicity at low concentrations. Given their ubiquitous role, zinc fingers domains have been proposed as mediators for the toxic and carcinogenic effects exerted by xenobiotic metals. To verify the structural effects of zinc replacement by cadmium in zinc fingers, we have determined the high resolution structure of the single Cys₂ His₂ zinc finger of the Arabidopsis thaliana SUPERMAN protein (SUP37) complexed to the cadmium ion by means of UV-vis and NMR techniques. SUP37 is able to bind Cd(II), though with a dissociation constant higher than that measured for Zn(II). Cd-SUP37 retains the ββα fold but experiences a global structural rearrangement affecting both the relative orientation of the secondary structure elements and the position of side chains involved in DNA recognition: among them Ser17 side chain, which we show to be essential for DNA binding, experiences the largest displacement.


Journal of Inorganic Biochemistry | 2014

Deciphering the zinc coordination properties of the prokaryotic zinc finger domain: The solution structure characterization of Ros87 H42A functional mutant

Maddalena Palmieri; Luigi Russo; Gaetano Malgieri; Sabrina Esposito; Ilaria Baglivo; Alessia Rivellino; Biancamaria Farina; Ivan de Paola; Laura Zaccaro; Danilo Milardi; Carla Isernia; Paolo V. Pedone; Roberto Fattorusso

The zinc coordination sphere in prokaryotic zinc finger domain is extremely versatile and influences the stability and the folding property of the domain. Of a particular interest is the fourth zinc coordinating position, which is frequently occupied by two successive histidines, both able to coordinate the metal ion. To clarify their structural and functional role we report the NMR solution structure and the dynamics behavior of Ros87 H42A, which is a functional mutant of Ros87, the DNA binding domain of the Ros protein containing a prokaryotic Cys2His2 zinc finger domain. The structural analysis indicates that reducing the spacer among the two coordinating histidines from 4 (among His37 and His42) amino acids to 3 (among His37 and His41) increases the helicity of the first α-helix. At the same time, the second helix appears more mobile in the μs-ms timescale and the hydrophobic core is reduced. These data explain the high frequency of three-residue His spacers in the eukaryotic zinc finger domain and their absence in the prokaryotic counterpart. Furthermore, the structural comparison shows that the second coordination position is more sensitive to H42A mutation with respect to the first and the third position, providing the rationale of the high variability of the second and the fourth zinc coordinating position in Ros homologs, which adopt different metal coordination but preserve similar tertiary structures and DNA binding activities. Finally, H/D exchange measurements and NMR thermal unfolding analysis indicate that this mutant likely unfolds via a different mechanism with respect to the wild-type.


Molecular Biology and Evolution | 2013

An Experimentally Tested Scenario for the Structural Evolution of Eukaryotic Cys2His2 Zinc Fingers from Eubacterial Ros Homologs

Fortuna Netti; Gaetano Malgieri; Sabrina Esposito; Maddalena Palmieri; Ilaria Baglivo; Carla Isernia; James G. Omichinski; Paolo V. Pedone; Nicolas Lartillot; Roberto Fattorusso

The exact evolutionary origin of the zinc finger (ZF) domain is unknown, as it is still not clear from which organisms it was first derived. However, the unique features of the ZF domains have made it very easy for evolution to tinker with them in a number of different manners, including their combination, variation of their number by unequal crossing-over or tandem duplication and tuning of their affinity for specific DNA sequence motifs through point substitutions. Classical Cys2His2 ZF domains as structurally autonomous motifs arranged in multiple copies are known only in eukaryotes. Nonetheless, a single prokaryotic Cys2His2 ZF domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens and recently characterized. The present work focuses on the evolution of the classical ZF domains with the goal of trying to determine whether eukaryotic ZFs have evolved from the prokaryotic Ros-like proteins. Our results, based on computational and experimental data, indicate that a single insertion of three amino acids in the short loop that separates the β-sheet from the α-helix of the Ros protein is sufficient to induce a structural transition from a Ros like to an eukaryotic-ZF like structure. This observation provides evidence for a structurally plausible and parsimonious scenario of fold evolution, giving a structural basis to the hypothesis of a horizontal gene transfer (HGT) from bacteria to eukaryotes.


Biochimica et Biophysica Acta | 2014

Molecular strategies to replace the structural metal site in the prokaryotic zinc finger domain

Ilaria Baglivo; Maddalena Palmieri; Alessia Rivellino; Fortuna Netti; Luigi Russo; Sabrina Esposito; Rosa Iacovino; Biancamaria Farina; Carla Isernia; Roberto Fattorusso; Paolo V. Pedone; Gaetano Malgieri

The specific arrangement of secondary elements in a local motif often totally relies on the formation of coordination bonds between metal ions and protein ligands. This is typified by the ~30 amino acid eukaryotic zinc finger motif in which a β-sheet and an α-helix are clustered around a zinc ion by various combinations of four ligands. The prokaryotic zinc finger domain (found in the Ros protein from Agrobacterium tumefaciens) is different from the eukaryotic counterpart as it consists of 58 amino acids arranged in a βββαα topology stabilized by a 15-residue hydrophobic core. Also, this domain tetrahedrally coordinates zinc and unfolds in the absence of the metal ion. The characterization of proteins belonging to the Ros homologs family has however shown that the prokaryotic zinc finger domain can overcome the metal requirement to achieve the same fold and DNA-binding activity. In the present work, two zinc-lacking Ros homologs (Ml4 and Ml5 proteins) have been thoroughly characterized using bioinformatics, biochemical and NMR techniques. We show how in these proteins a network of hydrogen bonds and hydrophobic interactions surrogate the zinc coordination role in the achievement of the same functional fold.


European Journal of Medicinal Chemistry | 2015

Towards understanding the molecular recognition process in prokaryotic zinc-finger domain

Luigi Russo; Maddalena Palmieri; Jolanda Valentina Caso; Gianluca D’Abrosca; Donatella Diana; Gaetano Malgieri; Ilaria Baglivo; Carla Isernia; Paolo V. Pedone; Roberto Fattorusso

Eukaryotic Cys2His2 zinc finger domain is one of the most common and important structural motifs involved in protein-DNA interaction. The recognition motif is characterized by the tetrahedral coordination of a zinc ion by conserved cysteine and histidine residues. We have characterized the prokaryotic Cys2His2 zinc finger motif, included in the DNA binding region (Ros87) of Ros protein from Agrobacterium tumefaciens, demonstrating that, although possessing a similar zinc coordination sphere, this domain presents significant differences from its eukaryotic counterpart. Furthermore, basic residues flanking the zinc binding region on either side have been demonstrated, by Electrophoretic Mobility Shift Assay (EMSA) experiments, to be essential for Ros DNA binding. In spite of this wealth of knowledge, the structural details of the mechanism through which the prokaryotic zinc fingers recognize their target genes are still unclear. Here, to gain insights into the molecular DNA recognition process of prokaryotic zinc finger domains we applied a strategy in which we performed molecular docking studies using a combination of Nuclear Magnetic Resonance (NMR) and Molecular Dynamics (MD) simulations data. The results demonstrate that the MD ensemble provides a reasonable picture of Ros87 backbone dynamics in solution. The Ros87-DNA model indicates that the interaction involves the first two residue of the first α-helix, and several residues located in the basic regions flanking the zinc finger domain. Interestingly, the prokaryotic zinc finger domain, mainly with the C-terminal tail that is wrapped around the DNA, binds a more extended recognition site than the eukaryotic counterpart. Our analysis demonstrates that the introduction of the protein flexibility in docking studies can improve, in terms of accuracy, the quality of the obtained models and could be particularly useful for protein showing high conformational heterogeneity as well as for computational drug design applications.


Scientific Reports | 2017

Ml proteins from Mesorhizobium loti and MucR from Brucella abortus : an AT-rich core DNA-target site and oligomerization ability

Ilaria Baglivo; Luciano Pirone; Emilia Pedone; Joshua E. Pitzer; Lidia Muscariello; Maria Michela Marino; Gaetano Malgieri; Andrea Freschi; Angela Chambery; Roy-Martin Roop; Paolo V. Pedone

Mesorhizobium loti contains ten genes coding for proteins sharing high amino acid sequence identity with members of the Ros/MucR transcription factor family. Five of these Ros/MucR family members from Mesorhizobium loti (Ml proteins) have been recently structurally and functionally characterized demonstrating that Ml proteins are DNA-binding proteins. However, the DNA-binding studies were performed using the Ros DNA-binding site with the Ml proteins. Currently, there is no evidence as to when the Ml proteins are expressed during the Mesorhizobium loti life cycle as well as no information concerning their natural DNA-binding site. In this study, we examine the ml genes expression profile in Mesorhizobium loti and show that ml1, ml2, ml3 and ml5 are expressed during planktonic growth and in biofilms. DNA-binding experiments show that the Ml proteins studied bind a conserved AT-rich site in the promoter region of the exoY gene from Mesorhizobium loti and that the proteins make important contacts with the minor groove of DNA. Moreover, we demonstrate that the Ml proteins studied form higher-order oligomers through their N-terminal region and that the same AT-rich site is recognized by MucR from Brucella abortus using a similar mechanism involving contacts with the minor groove of DNA and oligomerization.

Collaboration


Dive into the Ilaria Baglivo's collaboration.

Top Co-Authors

Avatar

Gaetano Malgieri

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Roberto Fattorusso

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Carla Isernia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Paolo V. Pedone

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Sabrina Esposito

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maddalena Palmieri

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Luigi Russo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Laura Zaccaro

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emilia Pedone

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge