Gaetano Speciale
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gaetano Speciale.
Nature | 2015
Fiona Cuskin; Elisabeth C. Lowe; Max J. Temple; Yanping Zhu; Elizabeth A. Cameron; Nicholas A. Pudlo; Nathan T. Porter; Karthik Urs; Andrew J. Thompson; Alan Cartmell; Artur Rogowski; Brian S. Hamilton; Rui Chen; Thomas J. Tolbert; Kathleen Piens; Debby Bracke; Wouter Vervecken; Zalihe Hakki; Gaetano Speciale; Jose L. Munōz-Munōz; Andrew Day; Maria J. Peña; Richard McLean; Michael D. L. Suits; Alisdair B. Boraston; Todd Atherly; Cherie J. Ziemer; Spencer J. Williams; Gideon J. Davies; D. Wade Abbott
Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a ‘selfish’ model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.
Angewandte Chemie | 2015
Andrew J. Thompson; Gaetano Speciale; Javier Iglesias-Fernández; Zalihe Hakki; Tyson Belz; Alan Cartmell; Richard J. Spears; E Chandler; Max J. Temple; Judith Stepper; Harry J. Gilbert; Carme Rovira; Spencer J. Williams; Gideon J. Davies
α-Mannosidases and α-mannanases have attracted attention for the insight they provide into nucleophilic substitution at the hindered anomeric center of α-mannosides, and the potential of mannosidase inhibitors as cellular probes and therapeutic agents. We report the conformational itinerary of the family GH76 α-mannanases studied through structural analysis of the Michaelis complex and synthesis and evaluation of novel aza/imino sugar inhibitors. A Michaelis complex in an (O) S2 conformation, coupled with distortion of an azasugar in an inhibitor complex to a high energy B2,5 conformation are rationalized through ab initio QM/MM metadynamics that show how the enzyme surface restricts the conformational landscape of the substrate, rendering the B2,5 conformation the most energetically stable on-enzyme. We conclude that GH76 enzymes perform catalysis using an itinerary that passes through (O) S2 and B2,5 (≠) conformations, information that should inspire the development of new antifungal agents.
Angewandte Chemie | 2015
Andrew J. Thompson; Gaetano Speciale; Javier Iglesias-Fernández; Zalihe Hakki; Tyson Belz; Alan Cartmell; Richard J. Spears; Emily Chandler; Max J. Temple; Judith Stepper; Harry J. Gilbert; Carme Rovira; Spencer J. Williams; Gideon J. Davies
α-Mannosidases and α-mannanases have attracted attention for the insight they provide into nucleophilic substitution at the hindered anomeric center of α-mannosides, and the potential of mannosidase inhibitors as cellular probes and therapeutic agents. We report the conformational itinerary of the family GH76 α-mannanases studied through structural analysis of the Michaelis complex and synthesis and evaluation of novel aza/imino sugar inhibitors. A Michaelis complex in an OS2 conformation, coupled with distortion of an azasugar in an inhibitor complex to a high energy B2,5 conformation are rationalized through ab initio QM/MM metadynamics that show how the enzyme surface restricts the conformational landscape of the substrate, rendering the B2,5 conformation the most energetically stable on-enzyme. We conclude that GH76 enzymes perform catalysis using an itinerary that passes through OS2 and B2,5≠ conformations, information that should inspire the development of new antifungal agents.
Chemistry: A European Journal | 2015
Zalihe Hakki; Andrew J. Thompson; Stephanie F Bellmaine; Gaetano Speciale; Gideon J. Davies; Spencer J. Williams
Glycoside hydrolase family 99 (GH99) was created to categorize sequence-related glycosidases possessing endo-α-mannosidase activity: the cleavage of mannosidic linkages within eukaryotic N-glycan precursors (Glc1-3 Man9 GlcNAc2 ), releasing mono-, di- and triglucosylated-mannose (Glc1-3 -1,3-Man). GH99 family members have recently been implicated in the ability of Bacteroides spp., present within the gut microbiota, to metabolize fungal cell wall α-mannans, releasing α-1,3-mannobiose by hydrolysing αMan-1,3-αMan→1,2-αMan-1,2-αMan sequences within branches off the main α-1,6-mannan backbone. We report the development of a series of substrates and inhibitors, which we use to kinetically and structurally characterise this novel endo-α-1,2-mannanase activity of bacterial GH99 enzymes from Bacteroides thetaiotaomicron and xylanisolvens. These data reveal an approximate 5 kJ mol(-1) preference for mannose-configured substrates in the -2 subsite (relative to glucose), which inspired the development of a new inhibitor, α-mannopyranosyl-1,3-isofagomine (ManIFG), the most potent (bacterial) GH99 inhibitor reported to date. X-ray structures of ManIFG or a substrate in complex with wild-type or inactive mutants, respectively, of B. xylanisolvens GH99 reveal the structural basis for binding to D-mannose- rather than D-glucose-configured substrates.
Journal of Biological Chemistry | 2017
Max J. Temple; Fiona Cuskin; Arnaud Baslé; Niall Hickey; Gaetano Speciale; Spencer J. Williams; Harry J. Gilbert; Elisabeth C. Lowe
Glycans are major nutrients available to the human gut microbiota. The Bacteroides are generalist glycan degraders, and this function is mediated largely by polysaccharide utilization loci (PULs). The genomes of several Bacteroides species contain a PUL, PUL1,6-β-glucan, that was predicted to target mixed linked plant 1,3;1,4-β-glucans. To test this hypothesis we characterized the proteins encoded by this locus in Bacteroides thetaiotaomicron, a member of the human gut microbiota. We show here that PUL1,6-β-glucan does not orchestrate the degradation of a plant polysaccharide but targets a fungal cell wall glycan, 1,6-β-glucan, which is a growth substrate for the bacterium. The locus is up-regulated by 1,6-β-glucan and encodes two enzymes, a surface endo-1,6-β-glucanase, BT3312, and a periplasmic β-glucosidase that targets primarily 1,6-β-glucans. The non-catalytic proteins encoded by PUL1,6-β-glucan target 1,6-β-glucans and comprise a surface glycan-binding protein and a SusD homologue that delivers glycans to the outer membrane transporter. We identified the central role of the endo-1,6-β-glucanase in 1,6-β-glucan depolymerization by deleting bt3312, which prevented the growth of B. thetaiotaomicron on 1,6-β-glucan. The crystal structure of BT3312 in complex with β-glucosyl-1,6-deoxynojirimycin revealed a TIM barrel catalytic domain that contains a deep substrate-binding cleft tailored to accommodate the hook-like structure adopted by 1,6-β-glucan. Specificity is driven by the complementarity of the enzyme active site cleft and the conformation of the substrate. We also noted that PUL1,6-β-glucan is syntenic to many PULs from other Bacteroidetes, suggesting that utilization of yeast and fungal cell wall 1,6-β-glucans is a widespread adaptation within the human microbiota.
Nature Chemical Biology | 2016
Gaetano Speciale; Yi Jin; Gideon J. Davies; Spencer J. Williams; Ethan D. Goddard-Borger
Sulfoquinovose is produced by photosynthetic organisms at a rate of 10(10) tons per annum and is degraded by bacteria as a source of carbon and sulfur. We have identified Escherichia coli YihQ as the first dedicated sulfoquinovosidase and the gateway enzyme to sulfoglycolytic pathways. Structural and mutagenesis studies unveiled the sequence signatures for binding the distinguishing sulfonate residue and revealed that sulfoquinovoside degradation is widespread across the tree of life.
Journal of the American Chemical Society | 2016
Gaetano Speciale; Marco Farren-Dai; Fahimeh S. Shidmoossavee; Spencer J. Williams; Andrew J. Bennet
The hydroxide-catalyzed hydrolysis of aryl 1,2-trans-glycosides proceeds through a mechanism involving neighboring group participation by a C2-oxyanion and rate-limiting formation of a 1,2-anhydro sugar (oxirane) intermediate. The transition state for the hydroxide-catalyzed hydrolysis of 4-nitrophenyl α-d-mannopyranoside in aqueous media has been studied by the use of multiple kinetic isotope effect (KIE) measurements in conjunction with ab initio theoretical methods. The experimental KIEs are C1-2H (1.112 ± 0.004), C2-2H (1.045 ± 0.005), anomeric 1-13C (1.026 ± 0.006), C2-13C (0.999 ± 0.005), leaving group oxygen 2-18O (1.040 ± 0.012), and C2-18O (1.044 ± 0.006). The transition state for the hydrolysis reaction was modeled computationally using the experimental KIE values as constraints. Taken together, the reported kinetic isotope effects and computational modeling are consistent with the reaction mechanism involving rate-limiting formation of a transient oxirane intermediate that opens in water to give α-d-mannopyranose. The transition state has significant nucleophilic participation by the C2-alkoxide, an essentially cleaved glycosidic bond, and a slight shortening of the endocyclic C1-O5 bond. The TS is late, consistent with the large, normal C2-18O isotope effect.
Nature | 2015
Fiona Cuskin; Elisabeth C. Lowe; Max J. Temple; Yanping Zhu; Elizabeth A. Cameron; Nicholas A. Pudlo; Nathan T. Porter; Karthik Urs; Andrew J. Thompson; Alan Cartmell; Artur Rogowski; Brian S. Hamilton; Rui Chen; Thomas J. Tolbert; Kathleen Piens; Debby Bracke; Wouter Vervecken; Zalihe Hakki; Gaetano Speciale; Jose L. Munōz-Munōz; Andrew Day; Maria J. Peña; Richard McLean; Michael D. L. Suits; Alisdair B. Boraston; Todd Atherly; Cherie J. Ziemer; Spencer J. Williams; Gideon J. Davies; D. Wade Abbott
This corrects the article DOI: 10.1038/nature13995
ChemBioChem | 2017
Taiki Kuribara; Makoto Hirano; Gaetano Speciale; Spencer J. Williams; Yukishige Ito; Kiichiro Totani
Within the endoplasmic reticulum, immature glycoproteins are sorted into secretion and degradation pathways through the sequential trimming of mannose residues from Man9GlcNAc2 to Man5GlcNAc2 by the combined actions of assorted α‐1,2‐mannosidases. It has been speculated that specific glycoforms encode signals for secretion and degradation. However, it is unclear whether the specific signal glycoforms are produced by random mannosidase action or are produced regioselectively in a sequenced manner by specific α‐1,2‐mannosidases. Here, we report the identification of a set of selective mannosidase inhibitors and development of conditions for their use that enable production of distinct pools of Man8GlcNAc2 isomers from a structurally defined synthetic Man9GlcNAc2 substrate in an endoplasmic reticulum fraction. Glycan processing analysis with these inhibitors provides the first biochemical evidence for selective production of the signal glycoforms contributing to traffic control in glycoprotein quality control.
Journal of the American Society for Mass Spectrometry | 2017
Sandra Osburn; Gaetano Speciale; Spencer J. Williams; Richard A. J. O’Hair
AbstractA suite of isotopologues of methyl D-glucopyranosides is used in conjunction with multistage mass spectrometry experiments to determine the radical site and cleavage reactions of sugar radical cations formed via a recently developed ‘bio-inspired’ method. In the first stage of CID (MS2), collision-induced dissociation (CID) of a protonated noncovalent complex between the sugar and S-nitrosocysteamine, [H3NCH2CH2SNO + M]+, unleashes a thiyl radical via bond homolysis to give the noncovalent radical cation, [H3NCH2CH2S• + M]+. CID (MS3) of this radical cation complex results in dissociation of the noncovalent complex to generate the sugar radical cation. Replacement of all exchangeable OH and NH protons with deuterons reveals that the sugar radical cation is formed in a process involving abstraction of a hydrogen atom from a C–H bond of the sugar coupled with proton transfer to the sugar, to form [M – H• + D+]. Investigation of this process using individual C-D labeled sugars reveals that the main site of H/D abstraction is the C2 position, since only the C2-deuterium labeled sugar yields a dominant [M – D• + H+] product ion. The fragmentation reactions of the distonic sugar radical cation, [M – H•+ H+], were studied by another stage of CID (MS4). 13C-labeling studies revealed that a series of three related fragment ions each contain the C1–C3 atoms; these arise from cross-ring cleavage reactions of the sugar. Graphical Abstractᅟ