Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gail Henderson is active.

Publication


Featured researches published by Gail Henderson.


Journal of Virology | 2001

Region of Herpes Simplex Virus Type 1 Latency-Associated Transcript Sufficient for Wild-Type Spontaneous Reactivation Promotes Cell Survival in Tissue Culture

Melissa Inman; Guey Chuen Perng; Gail Henderson; Homayon Ghiasi; Anthony B. Nesburn; Steven L. Wechsler; Clinton Jones

ABSTRACT The latency-associated transcript (LAT) is the only abundant herpes simplex virus type 1 (HSV-1) transcript expressed during latency. In the rabbit eye model, LAT null mutants do not reactivate efficiently from latency. We recently demonstrated that the LAT null mutantdLAT2903 induces increased levels of apoptosis in trigeminal ganglia of infected rabbits compared to LAT+strains (G.-C. Perng, C. Jones, J. Ciacci-Zarella, M. Stone, G. Henderson, A. Yokht, S. M. Slanina, F. M. Hoffman, H. Ghiasi, A. B. Nesburn, and C. S. Wechsler, Science 287:1500–1503, 2000).The same study also demonstrated that a plasmid expressing LAT nucleotides 301 to 2659 enhanced cell survival of transfected cells after induction of apoptosis. Consequently, we hypothesized that LAT enhances spontaneous reactivation in part, because it promotes survival of infected neurons. Here we report on the ability of plasmids expressing different portions of the 5′ end of LAT to promote cell survival after induction of apoptosis. A plasmid expressing the first 1.5 kb of LAT (LAT nucleotides 1 to 1499) promoted cell survival in neuro-2A (mouse neuronal) and CV-1 (monkey fibroblast) cells. A plasmid expressing just the first 811 nucleotides of LAT promoted cell survival less efficiently. Plasmids expressing the first 661 nucleotides or less of LAT did not promote cell survival. We previously showed that a mutant expressing just the first 1.5 kb of LAT has wild-type spontaneous reactivation in rabbits, and a mutant expressing just the first 811 nucleotides of LAT has a reactivation frequency higher than that of dLAT2903 but lower than that of wild-type virus. In addition, mutants reported here for the first time, expressing just the first 661 or 76 nucleotides of LAT, had spontaneous reactivation indistinguishable from that of the LAT null mutantdLAT2903. In summary, these studies provide evidence that there is a functional relationship between the ability of LAT to promote cell survival and its ability to enhance spontaneous reactivation.


Journal of Virology | 2002

A Gene Capable of Blocking Apoptosis Can Substitute for the Herpes Simplex Virus Type 1 Latency-Associated Transcript Gene and Restore Wild-Type Reactivation Levels

Guey Chuen Perng; Barak Maguen; Ling Jin; Kevin R. Mott; Nelson Osorio; Susan M. Slanina; Ada Yukht; Homayon Ghiasi; Anthony B. Nesburn; Melissa Inman; Gail Henderson; Clinton Jones; Steven L. Wechsler

ABSTRACT After ocular herpes simplex virus type 1 (HSV-1) infection, the virus travels up axons and establishes a lifelong latent infection in neurons of the trigeminal ganglia. LAT (latency-associated transcript), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. The LAT function responsible for this reactivation phenotype is not known. Recently, we showed that LAT can block programmed cell death (apoptosis) in neurons of the trigeminal ganglion in vivo and in tissue culture cells in vitro (G.-C. Perng et al., Science 287:1500–1503, 2000; M. Inman et al., J. Virol. 75:3636–3646, 2001). Consequently, we proposed that this antiapoptosis function may be a key to the mechanism by which LAT enhances reactivation. To study this further, we constructed a recombinant HSV-1 virus in which the HSV-1 LAT gene was replaced by an alternate antiapoptosis gene. We used the bovine herpes virus 1 (BHV-1) latency-related (LR) gene, which was previously shown to have antiapoptosis activity, for this purpose. The resulting chimeric virus, designated CJLAT, contains two complete copies of the BHV-1 LR gene (one in each viral long repeat) in place of the normal two copies of the HSV-1 LAT, on an otherwise wild-type HSV-1 strain McKrae genomic background. We report here that in both rabbits and mice reactivation of CJLAT was significantly greater than the LAT null mutant dLAT2903 (P < 0.0004 and P = 0.001, respectively) and was at least as efficient as wild-type McKrae. This strongly suggests that a BHV-1 LR gene function was able to efficiently substitute for an HSV-1 LAT gene function involved in reactivation. Although replication of CJLAT in rabbits and mice was similar to that of wild-type McKrae, CJLAT killed more mice during acute infection and caused more corneal scarring in latently infected rabbits. This suggested that the BHV-1 LR gene and the HSV-1 LAT gene are not functionally identical. However, LR and LAT both have antiapoptosis activity. These studies therefore strongly support the hypothesis that replacing LAT with an antiapoptosis gene restores the wild-type reactivation phenotype to a LAT null mutant of HSV-1 McKrae.


Journal of Virology | 2003

Infection of Cattle with a Bovine Herpesvirus 1 Strain That Contains a Mutation in the Latency-Related Gene Leads to Increased Apoptosis in Trigeminal Ganglia during the Transition from Acute Infection to Latency

Luciane Lovato; Melissa Inman; Gail Henderson; Alan R. Doster; Clinton Jones

ABSTRACT Bovine herpesvirus 1 (BHV-1) is an important pathogen of cattle and infection is usually initiated via the ocular or nasal cavity. After acute infection, the primary site for BHV-1 latency is sensory neurons in the trigeminal ganglia (TG). Reactivation from latency occurs sporadically, resulting in virus shedding and transmission to uninfected cattle. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. An LR mutant was constructed by inserting three stop codons near the beginning of the LR RNA. This mutant grows to wild-type (wt) efficiency in bovine kidney cells and in the nasal cavity of acutely infected calves. However, shedding of infectious virus from the eye and TG was dramatically reduced in calves infected with the LR mutant. Calves latently infected with the LR mutant do not reactivate after dexamethasone treatment. In contrast, all calves latently infected with wt BHV-1 or the LR rescued mutant reactivate from latency after dexamethasone treatment. In the present study, we compared the frequency of apoptosis in calves infected with the LR mutant to calves infected with wt BHV-1 because LR gene products inhibit apoptosis in transiently transfected cells. A sensitive TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay and an antibody that detects cleaved caspase-3 were used to identify apoptotic cells in TG. Both assays demonstrated that calves infected with the LR mutant for 14 days had higher levels of apoptosis in TG compared to calves infected with wt BHV-1 or to mock-infected calves. Viral gene expression, except for the LR gene, is extinguished by 14 days after infection, and thus this time frame is operationally defined as the establishment of latency. Real-time PCR analysis indicated that lower levels of viral DNA were present in the TG of calves infected with the LR mutant throughout acute infection. Taken together, these results suggest that the antiapoptotic properties of the LR gene play an important role during the establishment of latency.


Journal of NeuroVirology | 2002

Regulation of caspase 8- and caspase 9-induced apoptosis by the herpes simplex virus type 1 latency-associated transcript.

Gail Henderson; Weiping Peng; Ling Jin; Guey Chuen Perng; Anthony B. Nesburn; Steven L. Wechsler; Clinton Jones

The latency-associated transcript (LAT) is the only herpes simplex virus type 1 (HSV-1) gene that is abundantly transcribed during latency. Plasmids expressing LAT inhibit apoptosis induced by etoposide and ceramide in transiently transfected cells. LAT also inhibits apoptosis in trigeminal ganglia of rabbits and promotes spontaneous reactivation, suggesting these events are coupled. In this study, we compared caspase cleavage (activation) in cells infected with dLAT2903 (LAT-null mutant) versus wild-type McKrae or the rescued LAT-null mutant (dLAT2903R). Neuro-2A cells (mouse neuroblastoma), but not NIH3T3 cells infected with dLAT2903, contained higher levels of cleaved caspase 9 compared to cells infected with McKrae. Cleaved caspase 9 was also readily detected in neuro-2A cells, but not NIH3T3 cells, after ultraviolet (UV) light treatment, suggesting that the ability of cells to process caspases and undergo apoptosis influences the antiapoptotic properties of LAT. HSV-1 expresses numerous genes in addition to LAT that can block apoptosis during productive infection of cultured cells. Because these genes may mask the effects of LAT on apoptosis, transient transfection assays were performed to test whether LAT can inhibit caspase 8- and caspase 9-induced apoptosis. A plasmid expressing nucleotides 1 to 4658 of LAT efficiently inhibited caspase 8- and caspase 9-induced apoptosis in transiently transfected neuro-2A cells. These studies indicate that LAT has the potential to inhibit the two major pathways of apoptosis in the absence of other viral genes. Furthermore, these studies support a role for the antiapoptotic properties of LAT in the latency-reactivation cycle.


Journal of Virology | 2009

Two Small RNAs Encoded within the First 1.5 Kilobases of the Herpes Simplex Virus Type 1 Latency-Associated Transcript Can Inhibit Productive Infection and Cooperate To Inhibit Apoptosis

Wenwen Shen; Mariana Sá e Silva; Tareq Jaber; Olga Vitvitskaia; Sumin Li; Gail Henderson; Clinton Jones

ABSTRACT The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is abundantly expressed in latently infected trigeminal ganglionic sensory neurons. Expression of the first 1.5 kb of LAT coding sequences is sufficient for the wild-type reactivation phenotype in small animal models of infection. The ability of the first 1.5 kb of LAT coding sequences to inhibit apoptosis is important for the latency-reactivation cycle. Several studies have also concluded that LAT inhibits productive infection. To date, a functional LAT protein has not been identified, suggesting that LAT is a regulatory RNA. Two small RNAs (sRNAs) were previously identified within the first 1.5 kb of LAT coding sequences. In this study, we demonstrated that both LAT sRNAs were expressed in the trigeminal ganglia of mice latently infected with an HSV-1 strain that expresses LAT but not when mice were infected with a LAT null mutant. LAT sRNA1 and sRNA2 cooperated to inhibit cold shock-induced apoptosis in mouse neuroblastoma cells. LAT sRNA1, but not LAT sRNA2, inhibited apoptosis less efficiently than both sRNAs. When rabbit skin cells were cotransfected with plasmids that express LAT sRNA1 and HSV-1 genomic DNA, the amount of infectious virus released was reduced approximately 3 logs. Although LAT sRNA2 was less effective at inhibiting virus production, it inhibited expression of infected cell protein 4 (ICP4). Neither LAT sRNA had an obvious effect on ICP0 expression. These studies suggested that expression of two LAT sRNAs plays a role in the latency-reactivation cycle by inhibiting apoptosis and productive infection.


Journal of Virology | 2002

A Novel Herpes Simplex Virus Type 1 Transcript (AL-RNA) Antisense to the 5′ End of the Latency-Associated Transcript Produces a Protein in Infected Rabbits

Guey Chuen Perng; Barak Maguen; Ling Jin; Kevin R. Mott; John Kurylo; Lbachir BenMohamed; Ada Yukht; Nelson Osorio; Anthony B. Nesburn; Gail Henderson; Melissa Inman; Clinton Jones; Steven L. Wechsler

ABSTRACT Following primary ocular infection, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons of the trigeminal ganglia. Latency-associated transcript (LAT), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. Recently we showed that three different mutants that do not alter the LAT promoter but contain deletions within the 5′ end of the primary LAT transcript affect viral virulence (G. C. Perng et al., J. Virol. 75:9018-9028, 2001). In contrast, in LAT-null mutants viral virulence appears unaltered (T. M. Block et al., Virology 192:618-630, 1993; D. C. Bloom et al., J. Virol. 68:1283-1292, 1994; J. M. Hill et al., Virology 174:117-125, 1990; G. C. Perng et al., J. Virol. 68:8045-8055, 1994; F. Sedarati, K. M. Izumi, E. K. Wagner, and J. G. Stevens, J. Virol. 63:4455-4458, 1989). We therefore hypothesized that the 5′ end of LAT and/or an as yet unidentified gene that overlaps part of this region is involved in viral virulence. We report here on the discovery and initial characterization of a novel HSV-1 RNA consistent with such a putative gene. The novel RNA was antisense to the 5′ end of LAT and was designated AL-RNA (anti-LAT sense RNA). The AL-RNA overlapped the core LAT promoter and the first 158 nucleotides of the 5′ end of the primary LAT transcript. AL-RNA was detected in extracts from neuron-like cells (PC-12) infected with wild-type HSV-1 but not in cells infected with a mutant with the AL region deleted. The deletions in each of the above three mutants with altered virulence encompass the 5′ end of the AL-RNA, and these mutants cannot transcribe AL. This supports the hypothesis that the AL gene may play a role in viral virulence. Based on comparison to the corresponding genomic sequence, the AL-RNA did not appear to be spliced. The AL-RNA was polyadenylated and contained an open reading frame capable of encoding a protein 56 amino acids in length with a predicted molecular mass of 6.8 kDa. Sera from three of three rabbits infected with wild-type HSV-1 but not sera from any of three rabbits infected with a mutant with the AL-RNA region deleted recognized the Escherichia coli recombinantly expressed AL open reading frame on Western blots. In addition, four of six rabbits infected with wild-type virus developed enzyme-linked immunosorbent assay titers against one or more AL synthetic peptides. These results suggest that an AL protein is produced in vivo.


Journal of Virology | 2005

The Locus Encompassing the Latency-Associated Transcript of Herpes Simplex Virus Type 1 Interferes with and Delays Interferon Expression in Productively Infected Neuroblastoma Cells and Trigeminal Ganglia of Acutely Infected Mice

Weiping Peng; Gail Henderson; Melissa Inman; Lbachir BenMohamed; Guey Chuen Perng; Steven L. Wechsler; Clinton Jones

ABSTRACT The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is the only abundant viral transcript expressed in latently infected neurons. LAT inhibits apoptosis, suggesting that it regulates latency by promoting the survival of infected neurons. The LAT locus also contains a newly described gene (AL), which is antisense to LAT and partially overlaps LAT encoding sequences. When human (SK-N-SH) or mouse (neuro-2A) neuroblastoma cells were infected with a virus that does not express LAT or AL gene products (dLAT2903), beta interferon (IFN-β) and IFN-α RNA expression was detected earlier relative to the same cells infected with HSV-1 strains that express LAT and AL. Infection of neuro-2A cells with dLAT2903 also led to higher levels of IFN-β promoter activity than in cells infected with wild-type (wt) HSV-1. In contrast, IFN RNA expression was the same when human lung fibroblasts were infected with dLAT2903 or wt HSV-1. When BALB/c mice were infected with dLAT2903, IFN-α and IFN-β RNA expression was readily detected in trigeminal ganglia (TG) 4 days after infection. These transcripts were not detected in TG of mice infected with wt HSV-1 or dLAT2903R (marker-rescued dLAT2903) until 6 days postinfection. When TG single-cell suspensions from infected BALB/c mice were prepared and incubated in vitro with wt HSV-1 as a source of antigen, TG cultures prepared from mice infected with dLAT2903 produced and secreted higher levels of IFN protein than wt HSV-1 or dLAT2903R. Collectively, these studies suggest that the LAT locus interferes with and delays IFN expression.


Journal of NeuroVirology | 2004

The latency-related gene encoded by bovine herpesvirus 1 can suppress caspase 3 and caspase 9 cleavage during productive infection

Gail Henderson; Guey Chuen Perng; Anthony B. Nesburn; Steven L. Wechsler; Clinton Jones

When the bovine herpesvirus 1 (BHV-1) latency-related (LR) gene is inserted into the latency-associated transcript (LAT) locus of a herpes simplex virus type 1 (HSV-1) LAT deletion mutant, high levels of spontaneous reactivation from latency and enhanced pathogenesis occur. The LR gene, but not LAT, inhibits caspase 3 cleavage during productive infection. Plasmids containing LAT or the LR gene inhibit caspase 3 activation in transiently transfected cells, suggesting productive infection blocks certain antiapoptotic properties of LAT. These studies demonstrate a correlation between the enhanced pathogenic potential of CJLAT and the LR gene inhibiting caspase 3 cleavage during productive infection.


Molecular Genetics and Genomics | 1999

A Ras protein from a phytopathogenic fungus causes defects in hyphal growth polarity, and induces tumors in mice

G. M. Truesdell; Clinton Jones; T. Holt; Gail Henderson; Martin B. Dickman

Abstract Ras is a low-molecular-weight guanine nucleotide (GDP/GTP)-binding protein that transduces signals for growth and differentiation in eukaryotes. In mammals, the importance of Ras in regulating growth is underscored by the observation that activating mutations in ras genes are found in many animal tumors. Colletotrichum trifolii is a filamentous fungal pathogen of alfalfa which causes anthracnose disease. To investigate signaling pathways that regulate growth and development in this fungus, a gene encoding a Ras homolog (CT-Ras) was cloned from C. trifolii. CT-Ras exhibited extensive amino acid similarity to Ras proteins from higher and lower eukaryotes. A single amino acid change resulting in mutationally activated CT-Ras induced cellular transformation of mouse (NIH 3T3) fibroblasts and tumor formation in nu/nu mice. In Colletotrichum, mutationally activated CT-Ras induced abnormal hyphal proliferation and defects in polarized growth, and significantly reduced differentiation in a nutrient-dependent manner. These results show that C. trifolii Ras is a functional growth regulator in both mammals and fungi, and demonstrate that proper regulation of Ras is required for normal fungal growth and development.


Journal of NeuroVirology | 2007

Identification of a novel protein encoded by the latency-related gene of bovine herpesvirus 1

Florencia Meyer; Sandra Perez; Yunquan Jiang; You Zhou; Gail Henderson; Clinton Jones

The latency-related (LR) RNA encoded by bovine herpesvirus 1 (BHV-1) is abundantly expressed and alternatively spliced in trigeminal ganglia. A mutant BHV-1 strain that contains three stop codons at the beginning of LR open reading frame (ORF)-2 (LR mutant virus) does not express ORF-2 or an adjacent reading frame that lacks an initiating ATG (RF-C). Calves latently infected with wild-type (wt) BHV-1, but not with the LR mutant virus, reactivate from latency, indicating that proteins encoded by the LR gene regulate the latency-reactivation cycle. The LR gene also contains another large ORF (ORF-1) that is approximately 200 bp downstream of stop codons inserted at the N-terminus of ORF-2. To test whether the LR mutant virus can expresses ORF-1, the authors developed antiserum directed against ORF-1. The ORF-1 antiserum recognizes specific proteins in bovine cells productively infected with wt BHV-1. ORF-1 protein expression is reduced, but not blocked, when bovine cells are infected with the LR mutant virus. Confocal microscopy demonstrated ORF-1 is present in the cytoplasm and nucleus of productively infected cells, whereas RF-C or a fusion protein containing RF-C localizes to the cytoplasm. Trigeminal ganglia from calves latently infected with wt BHV-1 contain neurons specifically stained with the ORF-1 antiserum. These studies suggest ORF-1 expression may be important for the BHV-1 latency-reactivation cycle.

Collaboration


Dive into the Gail Henderson's collaboration.

Top Co-Authors

Avatar

Clinton Jones

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guey Chuen Perng

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar

Melissa Inman

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yange Zhang

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Ling Jin

Oregon State University

View shared research outputs
Top Co-Authors

Avatar

Weiping Peng

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Alan R. Doster

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Nelson Osorio

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge