Melissa Inman
University of Nebraska–Lincoln
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melissa Inman.
Journal of Virology | 2001
Melissa Inman; Guey Chuen Perng; Gail Henderson; Homayon Ghiasi; Anthony B. Nesburn; Steven L. Wechsler; Clinton Jones
ABSTRACT The latency-associated transcript (LAT) is the only abundant herpes simplex virus type 1 (HSV-1) transcript expressed during latency. In the rabbit eye model, LAT null mutants do not reactivate efficiently from latency. We recently demonstrated that the LAT null mutantdLAT2903 induces increased levels of apoptosis in trigeminal ganglia of infected rabbits compared to LAT+strains (G.-C. Perng, C. Jones, J. Ciacci-Zarella, M. Stone, G. Henderson, A. Yokht, S. M. Slanina, F. M. Hoffman, H. Ghiasi, A. B. Nesburn, and C. S. Wechsler, Science 287:1500–1503, 2000).The same study also demonstrated that a plasmid expressing LAT nucleotides 301 to 2659 enhanced cell survival of transfected cells after induction of apoptosis. Consequently, we hypothesized that LAT enhances spontaneous reactivation in part, because it promotes survival of infected neurons. Here we report on the ability of plasmids expressing different portions of the 5′ end of LAT to promote cell survival after induction of apoptosis. A plasmid expressing the first 1.5 kb of LAT (LAT nucleotides 1 to 1499) promoted cell survival in neuro-2A (mouse neuronal) and CV-1 (monkey fibroblast) cells. A plasmid expressing just the first 811 nucleotides of LAT promoted cell survival less efficiently. Plasmids expressing the first 661 nucleotides or less of LAT did not promote cell survival. We previously showed that a mutant expressing just the first 1.5 kb of LAT has wild-type spontaneous reactivation in rabbits, and a mutant expressing just the first 811 nucleotides of LAT has a reactivation frequency higher than that of dLAT2903 but lower than that of wild-type virus. In addition, mutants reported here for the first time, expressing just the first 661 or 76 nucleotides of LAT, had spontaneous reactivation indistinguishable from that of the LAT null mutantdLAT2903. In summary, these studies provide evidence that there is a functional relationship between the ability of LAT to promote cell survival and its ability to enhance spontaneous reactivation.
Journal of Virology | 2002
Guey Chuen Perng; Barak Maguen; Ling Jin; Kevin R. Mott; Nelson Osorio; Susan M. Slanina; Ada Yukht; Homayon Ghiasi; Anthony B. Nesburn; Melissa Inman; Gail Henderson; Clinton Jones; Steven L. Wechsler
ABSTRACT After ocular herpes simplex virus type 1 (HSV-1) infection, the virus travels up axons and establishes a lifelong latent infection in neurons of the trigeminal ganglia. LAT (latency-associated transcript), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. The LAT function responsible for this reactivation phenotype is not known. Recently, we showed that LAT can block programmed cell death (apoptosis) in neurons of the trigeminal ganglion in vivo and in tissue culture cells in vitro (G.-C. Perng et al., Science 287:1500–1503, 2000; M. Inman et al., J. Virol. 75:3636–3646, 2001). Consequently, we proposed that this antiapoptosis function may be a key to the mechanism by which LAT enhances reactivation. To study this further, we constructed a recombinant HSV-1 virus in which the HSV-1 LAT gene was replaced by an alternate antiapoptosis gene. We used the bovine herpes virus 1 (BHV-1) latency-related (LR) gene, which was previously shown to have antiapoptosis activity, for this purpose. The resulting chimeric virus, designated CJLAT, contains two complete copies of the BHV-1 LR gene (one in each viral long repeat) in place of the normal two copies of the HSV-1 LAT, on an otherwise wild-type HSV-1 strain McKrae genomic background. We report here that in both rabbits and mice reactivation of CJLAT was significantly greater than the LAT null mutant dLAT2903 (P < 0.0004 and P = 0.001, respectively) and was at least as efficient as wild-type McKrae. This strongly suggests that a BHV-1 LR gene function was able to efficiently substitute for an HSV-1 LAT gene function involved in reactivation. Although replication of CJLAT in rabbits and mice was similar to that of wild-type McKrae, CJLAT killed more mice during acute infection and caused more corneal scarring in latently infected rabbits. This suggested that the BHV-1 LR gene and the HSV-1 LAT gene are not functionally identical. However, LR and LAT both have antiapoptosis activity. These studies therefore strongly support the hypothesis that replacing LAT with an antiapoptosis gene restores the wild-type reactivation phenotype to a LAT null mutant of HSV-1 McKrae.
Journal of Virology | 2003
Luciane Lovato; Melissa Inman; Gail Henderson; Alan R. Doster; Clinton Jones
ABSTRACT Bovine herpesvirus 1 (BHV-1) is an important pathogen of cattle and infection is usually initiated via the ocular or nasal cavity. After acute infection, the primary site for BHV-1 latency is sensory neurons in the trigeminal ganglia (TG). Reactivation from latency occurs sporadically, resulting in virus shedding and transmission to uninfected cattle. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. An LR mutant was constructed by inserting three stop codons near the beginning of the LR RNA. This mutant grows to wild-type (wt) efficiency in bovine kidney cells and in the nasal cavity of acutely infected calves. However, shedding of infectious virus from the eye and TG was dramatically reduced in calves infected with the LR mutant. Calves latently infected with the LR mutant do not reactivate after dexamethasone treatment. In contrast, all calves latently infected with wt BHV-1 or the LR rescued mutant reactivate from latency after dexamethasone treatment. In the present study, we compared the frequency of apoptosis in calves infected with the LR mutant to calves infected with wt BHV-1 because LR gene products inhibit apoptosis in transiently transfected cells. A sensitive TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) assay and an antibody that detects cleaved caspase-3 were used to identify apoptotic cells in TG. Both assays demonstrated that calves infected with the LR mutant for 14 days had higher levels of apoptosis in TG compared to calves infected with wt BHV-1 or to mock-infected calves. Viral gene expression, except for the LR gene, is extinguished by 14 days after infection, and thus this time frame is operationally defined as the establishment of latency. Real-time PCR analysis indicated that lower levels of viral DNA were present in the TG of calves infected with the LR mutant throughout acute infection. Taken together, these results suggest that the antiapoptotic properties of the LR gene play an important role during the establishment of latency.
Journal of Virology | 2001
Melissa Inman; Luciane Lovato; Alan R. Doster; Clinton Jones
ABSTRACT Bovine herpesvirus 1 (BHV-1) is an important pathogen of cattle, and infection is usually initiated in the ocular or nasal cavity. Like other alphaherpesviruses, BHV-1 establishes latency in sensory neurons but has the potential of reactivating from latency and spreading. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA, which is alternatively spliced in trigeminal ganglia during acute infection (L. R. Devireddy and C. Jones, J. Virol. 72:7294–7301, 1998). LR gene products inhibit cell cycle progression (Y. Jiang, A. Hossain, M. T. Winkler, T. Holt, A. Doster, and C. Jones, J. Virol. 72:8133–8142, 1998) and chemically induced apoptosis (J. Ciacci-Zannela, M. Stone, G. Henderson, and C. Jones. J. Virol. 73:9734–9740, 1999). Although these studies suggest that LR gene products play an important role in the latency/pathogenesis of BHV-1, construction of a mutant is necessary to test this hypothesis. Because the bICP0 gene overlaps and is antisense to the LR gene, it was necessary to mutate the LR gene without altering bICP0 expression. This was accomplished by inserting three stop codons near the beginning of the LR RNA, thus interfering with expression of proteins expressed by the LR RNA. The LR mutant virus grew with wild-type (WT) efficiency in bovine kidney (MDBK) cells and expressed bICP0 at least as efficiently as WT BHV-1 or the LR rescued virus. When calves were infected with the LR mutant, we observed a dramatic decrease (3 to 4 log units) in ocular shedding during acute infection relative to WT or the LR rescued virus. In contrast, shedding of the LR mutant from the nasal cavity was not significantly different from that of the WT or the LR rescued virus. Calves infected with the LR mutant exhibited mild clinical symptoms, but they seroconverted. Neutralizing antibody titers were lower in calves infected with the LR mutant, confirming reduced growth. In summary, this study suggests that an LR protein promotes ocular shedding during acute infection of calves.
Journal of Virology | 2002
Melissa Inman; Luciane Lovato; Alan R. Doster; Clinton Jones
ABSTRACT Bovine herpesvirus 1 (BHV-1) is an important pathogen of cattle, and infection is usually initiated via the ocular or nasal cavity. Following acute infection, the primary site for BHV-1 latency is the sensory neuron. Reactivation from latency occurs sporadically, resulting in virus shedding and transmission to uninfected cattle. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA, suggesting that it mediates some aspect of latency. An LR mutant was constructed by inserting three stop codons near the beginning of the LR-RNA, suggesting that expression of LR proteins would be altered. The LR mutant grew with wild-type (wt) efficiency in bovine kidney cells (MDBK). When calves were infected with the LR mutant, a dramatic decrease (3 to 4 logs) in ocular, but not nasal, viral shedding occurred during acute infection relative to the wt or the LR-rescued virus (M. Inman, L. Lovato, A. Doster, and C. Jones, J. Virol. 75:8507-8515, 2001). In this study, we examined the latency reactivation cycle in calves infected with the LR mutant and compared these results to those from calves infected with wt BHV-1 or the LR-rescued virus. During acute infection, lower levels of infectious virus were detected in trigeminal ganglion homogenates from calves infected with the LR mutant. As judged by in situ hybridization, BHV-1-positive neurons were detected in trigeminal ganglia of calves infected with the wt but not the LR mutant. Although LR-RNA was detected by reverse transcription-PCR in calves latently infected with the LR mutant, a semiquantitative PCR analysis revealed that lower levels of viral DNA were present in trigeminal ganglia of calves infected with the LR mutant. Dexamethasone treatment of calves latently infected with wt BHV-1 or the LR-rescued virus, but not the LR mutant, consistently induced reactivation from latency, as judged by shedding of infectious virus from the nose or eyes and increases in BHV-1-specific antibodies. In summary, this study demonstrates that wt expression of LR gene products plays an important role in the latency reactivation cycle of BHV-1 in cattle.
Journal of Virology | 2002
Guey Chuen Perng; Barak Maguen; Ling Jin; Kevin R. Mott; John Kurylo; Lbachir BenMohamed; Ada Yukht; Nelson Osorio; Anthony B. Nesburn; Gail Henderson; Melissa Inman; Clinton Jones; Steven L. Wechsler
ABSTRACT Following primary ocular infection, herpes simplex virus type 1 (HSV-1) establishes a lifelong latent infection in sensory neurons of the trigeminal ganglia. Latency-associated transcript (LAT), the only known viral gene abundantly transcribed during HSV-1 neuronal latency, is required for high levels of reactivation. Recently we showed that three different mutants that do not alter the LAT promoter but contain deletions within the 5′ end of the primary LAT transcript affect viral virulence (G. C. Perng et al., J. Virol. 75:9018-9028, 2001). In contrast, in LAT-null mutants viral virulence appears unaltered (T. M. Block et al., Virology 192:618-630, 1993; D. C. Bloom et al., J. Virol. 68:1283-1292, 1994; J. M. Hill et al., Virology 174:117-125, 1990; G. C. Perng et al., J. Virol. 68:8045-8055, 1994; F. Sedarati, K. M. Izumi, E. K. Wagner, and J. G. Stevens, J. Virol. 63:4455-4458, 1989). We therefore hypothesized that the 5′ end of LAT and/or an as yet unidentified gene that overlaps part of this region is involved in viral virulence. We report here on the discovery and initial characterization of a novel HSV-1 RNA consistent with such a putative gene. The novel RNA was antisense to the 5′ end of LAT and was designated AL-RNA (anti-LAT sense RNA). The AL-RNA overlapped the core LAT promoter and the first 158 nucleotides of the 5′ end of the primary LAT transcript. AL-RNA was detected in extracts from neuron-like cells (PC-12) infected with wild-type HSV-1 but not in cells infected with a mutant with the AL region deleted. The deletions in each of the above three mutants with altered virulence encompass the 5′ end of the AL-RNA, and these mutants cannot transcribe AL. This supports the hypothesis that the AL gene may play a role in viral virulence. Based on comparison to the corresponding genomic sequence, the AL-RNA did not appear to be spliced. The AL-RNA was polyadenylated and contained an open reading frame capable of encoding a protein 56 amino acids in length with a predicted molecular mass of 6.8 kDa. Sera from three of three rabbits infected with wild-type HSV-1 but not sera from any of three rabbits infected with a mutant with the AL-RNA region deleted recognized the Escherichia coli recombinantly expressed AL open reading frame on Western blots. In addition, four of six rabbits infected with wild-type virus developed enzyme-linked immunosorbent assay titers against one or more AL synthetic peptides. These results suggest that an AL protein is produced in vivo.
Journal of Virology | 2005
Weiping Peng; Gail Henderson; Melissa Inman; Lbachir BenMohamed; Guey Chuen Perng; Steven L. Wechsler; Clinton Jones
ABSTRACT The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is the only abundant viral transcript expressed in latently infected neurons. LAT inhibits apoptosis, suggesting that it regulates latency by promoting the survival of infected neurons. The LAT locus also contains a newly described gene (AL), which is antisense to LAT and partially overlaps LAT encoding sequences. When human (SK-N-SH) or mouse (neuro-2A) neuroblastoma cells were infected with a virus that does not express LAT or AL gene products (dLAT2903), beta interferon (IFN-β) and IFN-α RNA expression was detected earlier relative to the same cells infected with HSV-1 strains that express LAT and AL. Infection of neuro-2A cells with dLAT2903 also led to higher levels of IFN-β promoter activity than in cells infected with wild-type (wt) HSV-1. In contrast, IFN RNA expression was the same when human lung fibroblasts were infected with dLAT2903 or wt HSV-1. When BALB/c mice were infected with dLAT2903, IFN-α and IFN-β RNA expression was readily detected in trigeminal ganglia (TG) 4 days after infection. These transcripts were not detected in TG of mice infected with wt HSV-1 or dLAT2903R (marker-rescued dLAT2903) until 6 days postinfection. When TG single-cell suspensions from infected BALB/c mice were prepared and incubated in vitro with wt HSV-1 as a source of antigen, TG cultures prepared from mice infected with dLAT2903 produced and secreted higher levels of IFN protein than wt HSV-1 or dLAT2903R. Collectively, these studies suggest that the LAT locus interferes with and delays IFN expression.
Journal of Clinical Microbiology | 2005
Sandra Perez; Melissa Inman; Alan R. Doster; Clinton Jones
ABSTRACT Infection of calves with bovine herpesvirus 1 (BHV-1) results in transient immunosuppression that may lead to bacterium-induced pneumonia and, occasionally, death. Although sensory neurons in the trigeminal ganglia (TG) are the primary site of BHV-1 latency, viral genomes are detected in the tonsils of latently infected calves. Dexamethasone (DEX) consistently induces reactivation from latency, and viral gene expression is detected in TG and tonsils. In sensory neurons of latently infected calves, the latency-related (LR) gene is abundantly expressed and is required for reactivation from latency. In the present study, we compared the abilities of wild-type (wt) BHV-1 and a strain with a mutation in the LR gene (the LR mutant strain) to grow in the tonsils of infected calves and reactivate from latency. Lower levels of the LR mutant virus were detected in the tonsils of acutely infected calves. LR mutant viral DNA was consistently detected by PCR in the tonsils of latently infected calves, suggesting that the establishment of a latent or persistent infection occurred. Although the LR mutant did not reactivate from latency in vivo after DEX treatment, explantation of tonsil tissue from calves latently infected with the LR mutant yielded infectious virus. Relative to wt BHV-1, the LR mutant did not induce explant-induced reactivation as efficiently. These studies indicate that the LR gene promotes virus shedding from tonsil tissue during acute infection and reactivation from latency in tonsil tissue in vivo. We suggest that incorporation of the LR gene mutation into existing modified live vaccines would prevent reactivation from latency in neural and nonneural sites and would thus prevent transmission to other animals.
Journal of General Virology | 2001
Melissa Inman; Yange Zhang; Vicki Geiser; Clinton Jones
The bICP0 protein encoded by bovine herpesvirus 1 (BHV-1) is believed to activate transcription and consequently productive infection. Expression of full-length bICP0 protein is toxic in transiently transfected mouse neuroblastoma cells (neuro-2A) in the absence of other viral genes. However, bICP0 does not appear to directly induce apoptosis. Although bICP0 is believed to be functionally similar to the herpes simplex virus type 1-encoded ICP0, the only protein domain that is well conserved is a C3HC4 zinc ring finger located near the N terminus of both proteins. Site-specific mutagenesis of the zinc ring finger of bICP0 demonstrated that it was important for inducing aggregated chromatin structures in transfected cells and toxicity. The zinc ring finger was also required for stimulating productive infection in bovine cells and for trans-activating the thymidine kinase (TK) promoter of herpes simplex virus type 1. Deletion of amino acids spanning 356-677 of bICP0 altered subcellular localization of bICP0 and prevented trans-activation of the TK promoter. However, this deletion did not prevent trans-activation of the viral genome. Taken together, these studies indicated that bICP0 has several functional domains, including the zinc ring finger, which stimulate productive infection and influence cell survival.
Journal of Virology | 2007
Florencia Meyer; Sandra Perez; Vicki Geiser; Mark Sintek; Melissa Inman; Clinton Jones
ABSTRACT Following acute infection, bovine herpesvirus 1 establishes latency in sensory neurons of trigeminal ganglia (TG). Reactivation from latency occurs periodically, resulting in the shedding of infectious virus. The latency-related (LR) RNA is abundantly expressed in TG of latently infected calves, and the expression of LR proteins is necessary for dexamethasone-induced reactivation from latency. Previously published studies also identified an alternatively spliced LR transcript which is abundantly expressed in TG at 7 days after infection and has the potential to encode a novel LR fusion protein. Seven days after infection is when extensive viral gene expression is extinguished in TG and latency is established, suggesting that LR gene products influence the establishment of latency. In this study, we used a bacterial two-hybrid assay to identify cellular proteins that interact with the novel LR fusion protein. The LR fusion protein interacts with two proteins that can induce apoptosis (Bid and Cdc42) and with CCAAT enhancer binding protein alpha (C/EBP-α). Additional studies confirmed that the LR fusion protein interacts with human or insect C/EBP-α. C/EBP-α protein expression is induced in TG neurons of infected calves and after dexamethasone-induced reactivation from latency. Wild-type C/EBP-α, but not a DNA binding mutant of C/EBP-α, enhances plaque formation in bovine cells. We hypothesize that interactions between the LR fusion protein and C/EBP-α promote the establishment of latency.