Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gail Stilling is active.

Publication


Featured researches published by Gail Stilling.


Neurology | 2001

The earliest pathologic alterations in dysferlinopathy

Duygu Selcen; Gail Stilling; Andrew G. Engel

Background: Dysferlinopathies are associated with proximal or distal muscular dystrophy. Dysferlin immunolocalizes to the muscle fiber periphery but does not associate with the dystrophin–glycoprotein complex; its function in humans, and the mechanism by which it causes muscle fiber injury, are not known. The authors therefore searched for pathogenetic clues by examining early abnormalities in nonnecrotic muscle fibers in dysferlinopathy. Five dysferlin-deficient patients were investigated. Weakness was distal in two, proximal in one, and both proximal and distal in two. Patient 5 was only mildly affected. Methods: Immunoblot analysis, membrane attack complex (MAC) immunolocalization, and quantitative electron microscopy. Results: In Patients 1 through 4, but not in 5, part or the entire surface of isolated nonnecrotic muscle fibers immunostained for MAC. Quantitative electron microscopy of 175 nonnecrotic muscle fibers revealed one or more of the following: 1) small (0.11 to 1.8 μm) plasmalemmal defects in 64% of fibers; 2) thickened basal lamina over some defects; 3) replacement of the plasma membrane by one to multiple layers of small vesicles in 57% of fibers; 4) papillary projections, frequently disintegrating, in 24 to 36% of fibers in Patients 1 through 4 but absent in fibers of Patient 5; 5) small subsarcolemmal vacuoles, some undergoing exocytosis, in 57% of fibers; and 6) infrequent subsarcolemmal regions containing rough endoplasmic reticulum and abundant free ribosomes. Conclusions: Dysferlin is likely required for maintaining the structural integrity of the muscle fiber plasma membrane, and plasma membrane injury is an early event in the pathogenesis of dysferlinopathy. MAC activation can participate in but is not an initial or primary event causing muscle fiber injury.


Journal of Neuropathology and Experimental Neurology | 1999

Myopathy, myasthenic syndrome, and epidermolysis bullosa simplex due to plectin deficiency

Brenda Banwell; James Russel; Takayasu Fukudome; Xin Ming Shen; Gail Stilling; Andrew G. Engel

Plectin, an intermediate filament linking protein, is normally associated with the sarcolemma, nuclear membrane, and intermyofibrillar network in muscle, and with hemisdesmosomes in skin. A 20-year-old female with epidermolysis bullosa simplex since birth had progressive ocular, facial, limb, and trunkal weakness and fatigability since age 9, fivefold CK elevation, a 25% decrement with myopathic motor unit potentials and increased electrical irritability on electromyography, and no anti-acetylcholine receptor (AChR) antibodies. Plectin expression was absent in muscle and severe plectin deficiency was noted in skin. Morphologic studies revealed necrotic and regenerating fibers and a wide spectrum of ultrastructural abnormalities: large accumulations of heterochromatic and lobulated nuclei, rare apoptotic nuclei, numerous cytoplasmic and few intranuclear nemaline rods, disarrayed myofibrils, thick-filament loss, vacuolar change, and pathologic alterations in membranous organelles. Many endplates (EPs) had an abnormal configuration with chains of small regions over the fiber surface and a few displayed focal degeneration of the junctional folds. The EP AChR content was normal. In vitro electrophysiologic studies showed normal quantal release by nerve impulse, small miniature EP potentials, and fetal as well as adult AChR channels at the EP. Our findings support the notion that plectin is essential for the structural integrity of muscle and skin, and for normal neuromuscular transmission.


Modern Pathology | 2010

MicroRNA expression in ileal carcinoid tumors: downregulation of microRNA-133a with tumor progression

Katharina H. Ruebel; Alexey A. Leontovich; Gail Stilling; Shuya Zhang; Alberto Righi; Long Jin; Ricardo V. Lloyd

MicroRNAs (miRNAs) are involved in cell proliferation, differentiation, and apoptosis and can function as tumor suppressor genes or oncogenes. The role of miRNAs in neuroendocrine tumors such as ileal carcinoids is largely unknown. We examined the differential expression of 95 miRNAs by RT–PCR using the QuantiMir System in eight matching primary and metastatic carcinoid tumors from the ileum. All miRNAs chosen for the QuantiMir System array were based on their potential functions related to cancer biology, cell development, and apoptosis. The expression of miRNAs for the samples was normalized to miRNA-197, and the matching primary and metastatic tumors were compared. There was downregulation of miRNA-133a, -145, -146, -222, and -10b in all samples between the primary and matching metastatic tumors and upregulation of miRNA-183, -488, and -19a+b in six of eight metastatic carcinoids compared to the primary tumors. miRNA-133a was further analyzed by TaqMan real-time RT–PCR and northern hybridization using six additional matching primary and metastatic samples, which supported the PCR array findings. There were significant differences in miRNA-133a expression with downregulation in the metastasis compared to the primary in the eight original cases (P<0.009) and in the six additional cases used for validation (P<0.014). Laser capture microdissection and real-time RT–PCR analysis using normal ileum found miRNA-133a expression in normal enterochromaffin cells. In situ hybridization in normal ileum showed that some of the mucosal endocrine cells expressed miRNA-133a. Both primary and metastatic ileal carcinoid tumors expressed miRNA-133a by in situ hybridization. These results provide information about novel marker miRNAs that may be used as biomarkers and/or therapeutic targets in intestinal carcinoid tumors.


Endocrine | 2010

MicroRNA expression in ACTH-producing pituitary tumors: up-regulation of microRNA-122 and -493 in pituitary carcinomas

Gail Stilling; Zhifu Sun; Shuya Zhang; Long Jin; Alberto Righi; Gάbor Kovācs; Mάrta Korbonits; Bernd W. Scheithauer; Kalman Kovacs; Ricardo V. Lloyd

MicroRNAs (miRNAs) are involved in cell proliferation, differentiation, and apoptosis, and can function as tumor suppressor genes or oncogenes. The expression of miRNAs in pituitary carcinomas has not been previously examined. We used miRNA profiling with 1,145 probes to study miRNA expression in normal anterior pituitary (6 cases), adrenocorticotropin (ACTH)-producing adenomas (8 cases), and ACTH-producing pituitary carcinomas (two cases). Real-time RT-PCR and in situ hybridization were used to confirm and independently validate miRNAs that were significantly up-regulated or down-regulated between the pituitary tissues. There were more miRNAs up- (188) or down-regulated (160) between adenomas and normal pituitaries compared to carcinomas and normal pituitaries (92 up- and 91 down-regulated) or between carcinomas and adenomas (46 up- and 52 down-regulated). Both real-time RT-PCR and in situ hybridization showed significant up-regulation of miRNA-122 between pituitary carcinomas and adenomas. MiRNA-493 was also up-regulated in carcinomas compared to ACTH adenomas. Analysis of genes that miRNA-493 interacts with included LGALS3 and RUNX2 (http://microrna.sanger.ac.uk) both of which have been shown to have roles in pituitary tumor cell growth. These results provide information about marker miRNAs that may lead to further insights into the regulation of pituitary tumor growth and development.


Endocrine | 2006

Patterns of gene expression in pituitary carcinomas and adenomas analyzed by high-density oligonucleotide arrays, reverse transcriptase-quantitative PCR, and protein expression

Katharina H. Ruebel; Alexey A. Leontovich; Long Jin; Gail Stilling; Heyu Zhang; Xiang Qian; Nobuki Nakamura; Bernd W. Scheithauer; Kalman Kovacs; Ricardo V. Lloyd

Very few of the genes that are important in pituitary tumor initiation, progression, and metastasis have been identified to date. To identify potential genes that may be important in pituitary tumor progression and carcinoma development, we used AffymetrixTM GeneChip HGU-133A-oligonucleotide arrays, which contain more than 15,000 characterized genes from the human genome to study gene expression in an ACTH pituitary carcinoma metastatic to the liver and four pituitary adenomas. Reverse-transcriptase real-time quantitative-PCR (RT-qPCR) was then used to analyze 4 nonneoplastic pituitaries, 19 adenomas, and the ACTH carcinoma. A larger series of pituitary adeno mas and carcinomas were also analyzed for protein expression using tissue microarrays (TMA) (n=233) and by Western blotting (n=18). There were 4298 genes that were differentially expressed among the adenomas compared to the carcinoma, with 2057 genes overexpressed and 2241 genes underexpressed in the adenomas. The betagalacioside binding protein galactin-3 was underexpressed in some adenomas compared to the carcinomas. Prolactin (PRL) and ACTH tumors had the highest levels of expression of galectin-3. The human achaetescute homolog-1 ASCL1 (hASH-1) gene was also underexpressed in some adenomas compared to the carcinoma. Prolactin and ACTH tumors had the highest levels of expression of hASH-1. ID2, which has an important role in cell development and tumorigenesis, was underexpressed in some adenomas compared to the carcinomas. Transducin-like enhancer of split four/Croucho (TLE-4) was over-expressed in adenomas compared to the ACTH carcinoma. The differential expression of these genes was validated by RT-qPCR, by immunohistochemistry using TMA and by Western blotting. These results indicate that the LGALS3, hASH1, ID2, and TLE-4 genes may have important roles in the development of pituitary carcinomas.


Endocrine | 2009

RUNX1 and RUNX2 upregulate Galectin-3 expression in human pituitary tumors

He Yu Zhang; Long Jin; Gail Stilling; Katharina H. Ruebel; Kendra Coonse; Yoshinori Tanizaki; Avraham Raz; Ricardo V. Lloyd

Galectin-3 is expressed in a cell-type specific manner in human pituitary tumors and may have a role in pituitary tumor development. In this study, we hypothesized that Galectin-3 is regulated by RUNX proteins in pituitary tumors. Transcription factor prediction programs revealed several putative binding sites in the LGALS3 (Galectin-3 gene) promoter region. A human pituitary cell line HP75 was used as a model to study LGALS3 and RUNX interactions using Chromatin immunoprecipitation assay and electrophoresis mobility shift assay. Two binding sites for RUNX1 and one binding site for RUNX2 were identified in the LGALS3 promoter region. LGALS3 promoter was further cloned into a luciferase reporter, and the experiments showed that both RUNX1 and RUNX2 upregulated LGALS3. Knock-down of either RUNX1 or RUNX2 by siRNA resulted in a significant downregulation of Galectin-3 expression and decreased cell proliferation in the HP 75 cell line. Immunohistochemistry showed a close correlation between Galectin-3 expression and RUNX1/RUNX2 level in pituitary tumors. These results demonstrate a novel binding target for RUNX1 and RUNX2 proteins and suggest that Galectin-3 is regulated by RUNX1 and RUNX2 in human pituitary tumor cells by direct binding to the promoter region of LGALS3 and thus may contribute to pituitary tumor progression.


Endocrine | 2006

Association of DNA methylation and epigenetic inactivation of RASSF1A and beta-catenin with metastasis in small bowel carcinoid tumors.

He Yu Zhang; Kandelaria M. Rumilla; Long Jin; Nobuki Nakamura; Gail Stilling; Katharina H. Ruebel; Timothy J. Hobday; Charles Erlichman; Lori A. Erickson; Ricardo V. Lloyd

We analyzed promoter methylation of RASSF1A, CTNNB1, CDH1, LAMB3, LAMC2, RUNX3, NORE1A, and CAV1 using methylation-specific PCR in 33 cases of small bowel carcinoid with both matched primary and metastatic tumors. The methylation status of RASSF1A and CTNNB1 were also determined in six primary appendiceal carcinoid tumors. Two neuroendocrine cell lines, NCI-H727 and HTB-119, were analyzed for promoter methylation. Immunohistochemical analyses for RASSF1A and beta-catenin were performed in 28 matched primary and metastatic tumors. Western blot analysis for RASSF1A and beta-catenin was also performed. Normal enterochromaffin cells were unmethylated in all eight genes examined. RASSF1A and CTNNB1 were unmethylated in appendiceal carcinoids. Methylation of RASSF1A and CTNNB1 promoters was more frequent in metastatic compared to primary tumors (p=0.013 and 0.004, respectively). The NCI-H727 and HTB-119 cells lines were methylated in the RASSF1A promoter region, and after treatment with 5-aza-2′-deoxycytidine (5-AZA), RASSF1A mRNA was expressed in both cell lines. Western blot results for RASSF1A and beta-catenin supported the methylation-specific PCR findings. The other six genes did not show significant differences. These results suggest that increased methylation of RASSF1A and CTNNB1 may play important roles in progression and metastasis of small bowel carcinoid tumors.


Molecular and Cellular Endocrinology | 2010

Identification and consequences of galectin-3 expression in pituitary tumors

Alberto Righi; Long Jin; Shuya Zhang; Gail Stilling; Bernd W. Scheithauer; Kalman Kovacs; R.V. Lloyd

Although the mechanisms regulating pituitary tumor development and progression are still unclear, new information on the molecular mechanisms involved in the pathogenesis of human pituitary tumors have accumulated. Recent evidence suggests that galectin-3 plays an important role in pituitary tumorigenesis and in tumor progression. Galectin-3 is expressed in a variety of tumors and the intensity of expression and localization depend on tumor progression, invasiveness and metastatic potential. Galectin-3 expression has been used as a potential diagnostic and/or prognostic marker in a variety of neoplasms. This review summarizes existing information regarding the structural and functional properties of galectin-3 protein as well as the LGALS3 gene in pituitary tumorigenesis. Given its role in pituitary tumor cell proliferation and in apoptosis, galectin-3 may be a target for the treatment of aggressive pituitary tumors.


Circulation-cardiovascular Genetics | 2013

Natriuretic peptide receptor-3 gene (NPR3): Nonsynonymous polymorphism results in significant reduction in protein expression because of accelerated degradation

Naveen L. Pereira; Dong Lin; Linda L. Pelleymounter; Irene Moon; Gail Stilling; Bruce W. Eckloff; Eric D. Wieben; Margaret M. Redfield; John C. Burnett; Vivien C. Yee; Richard M. Weinshilboum

Background— The primary role of natriuretic peptide receptor-3 (NPR3) or NPR-C is in the clearance of natriuretic peptides that play an important role in modulating intravascular volume and vascular tone. Genetic variation in NPR3 has been associated with variation in blood pressure and obesity. Despite the importance of NPR3, sequence variation in the gene has not been addressed using DNA from different ethnic populations. We set out to identify and functionally characterize genetic variation in NPR3 in 3 ethnic groups. Methods and Results— DNA samples from 96 European American, 96 African American, and 96 Han Chinese American healthy subjects were used to resequence NPR3 exons, splice junctions, and flanking regions. We identified 105 polymorphisms, 50 of which were novel, including 8 nonsynonymous single-nucleotide polymorphisms, 7 were novel. Expression constructs were created for the nonsynonymous single-nucleotide polymorphisms. HEK293 cells were transfected with constructs for wild type and variant allozymes; and recombinant proteins were measured by quantitative Western blot analysis. The most significant change in NPR3 protein was observed for the Arg146 variant allozyme, with 20% of wild-type protein, primarily because of autophagy-dependent degradation. NPR3 structural modeling confirmed that the Arg146 variant protein was not compatible with wild-type conformation and could result in protein misfolding or instability. Conclusions— Multiple novel NPR3 genetic polymorphisms were identified in 3 ethnic groups. The Arg146 allozyme displayed a significant decrease in protein quantity because of degradation mediated predominantly by autophagy. This genetic variation could have a significant effect on the metabolism of natriuretic peptides with potential clinical implications.Background—The primary role of natriuretic peptide receptor-3 (NPR3) or NPR-C is in the clearance of natriuretic peptides that play an important role in modulating intravascular volume and vascular tone. Genetic variation in NPR3 has been associated with variation in blood pressure and obesity. Despite the importance of NPR3, sequence variation in the gene has not been addressed using DNA from different ethnic populations. We set out to identify and functionally characterize genetic variation in NPR3 in 3 ethnic groups. Methods and Results—DNA samples from 96 European American, 96 African American, and 96 Han Chinese American healthy subjects were used to resequence NPR3 exons, splice junctions, and flanking regions. We identified 105 polymorphisms, 50 of which were novel, including 8 nonsynonymous single-nucleotide polymorphisms, 7 were novel. Expression constructs were created for the nonsynonymous single-nucleotide polymorphisms. HEK293 cells were transfected with constructs for wild type and variant allozymes; and recombinant proteins were measured by quantitative Western blot analysis. The most significant change in NPR3 protein was observed for the Arg146 variant allozyme, with 20% of wild-type protein, primarily because of autophagy-dependent degradation. NPR3 structural modeling confirmed that the Arg146 variant protein was not compatible with wild-type conformation and could result in protein misfolding or instability. Conclusions—Multiple novel NPR3 genetic polymorphisms were identified in 3 ethnic groups. The Arg146 allozyme displayed a significant decrease in protein quantity because of degradation mediated predominantly by autophagy. This genetic variation could have a significant effect on the metabolism of natriuretic peptides with potential clinical implications.


Endocrine Pathology | 2007

Characterization of the Functional and Growth Properties of Cell Lines Established from Ileal and Rectal Carcinoid Tumors

Gail Stilling; Heyu Zhang; Katharina H. Ruebel; Alexey A. Leontovich; Long Jin; Yoshinori Tanizaki; Shuya Zhang; Lori A. Erickson; Timothy J. Hobday; Ricardo V. Lloyd

Carcinoids of the intestine are the most common gastrointestinal carcinoid tumors. Therapeutic options to treat patients with these tumors are limited. There are very few ileal carcinoid cell lines available for in vitro studies to analyze new drugs that could be effective in treating patients with metastatic tumors. A replication defective recombinant adenovirus with an SV40 early T-antigen insert was used to infect two intestinal carcinoid tumors to create carcinoid cell lines. The cell lines were studied by cell culture, reverse transcription polymerase chain reaction, Western blotting, and immunohistochemistry. Both cell lines expressed SV40 large T antigen and receptors for TGFβ1, TGFβ2, EGFR, and somatostatin receptors. Treatment with TGFβ1 led to growth inhibition and increased apoptosis in the cultured cells. Octreotide inhibited cell growth of both cell lines while stimulating apoptosis. Treatment of the HC45 cells with gefitinib also inhibited cell growth in a concentration-dependent manner. TGFβ treatment stimulated chromogranin A expression while expression of two other granins, chromogranin B and 7B2, did not change significantly. RNA profiling of cells treated with TGFβ1 showed increased expression of vitamin D3 receptor. This finding was validated by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemistry. These results indicate that these carcinoid cell lines can be used to study the proliferative and apoptotic mechanisms involved in intestinal carcinoid tumor growth regulation.

Collaboration


Dive into the Gail Stilling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ricardo V. Lloyd

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge