Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Irene Moon is active.

Publication


Featured researches published by Irene Moon.


Drug Metabolism and Disposition | 2006

GLUTATHIONE S-TRANSFERASE OMEGA 1 AND OMEGA 2 PHARMACOGENOMICS

Baidehi Mukherjee; Oreste E. Salavaggione; Linda L. Pelleymounter; Irene Moon; Bruce W. Eckloff; Daniel J. Schaid; Eric D. Wieben; Richard M. Weinshilboum

Glutathione S-transferase omega 1 and omega 2 (GSTO1 and GSTO2) catalyze monomethyl arsenate reduction, the rate-limiting reaction in arsenic biotransformation. As a step toward pharmacogenomic studies of these phase II enzymes, we resequenced human GSTO1 and GSTO2 using DNA samples from four ethnic groups. We identified 31 and 66 polymorphisms in GSTO1 and GSTO2, respectively, with four nonsynonymous-coding single nucleotide polymorphisms (cSNPs) in each gene. There were striking variations among ethnic groups in polymorphism frequencies and types. Expression constructs were created for all eight nonsynonymous cSNPs, as well as a deletion of codon 155 in GSTO1, and those constructs were used to transfect COS-1 cells. Quantitative Western blot analysis, after correction for transfection efficiency, showed a reduction in protein level of greater than 50% for the GSTO1 Tyr32 variant allozyme compared with wild type (WT), whereas levels for the Asp140, Lys208, Val236, and codon 155 deletion variant constructs were similar to that of the WT. For GSTO2, the Tyr130 and Ile158 variant allozymes showed 50 and 84% reductions in levels of expression, respectively, compared with WT, whereas the Ile41 and Asp142 allozymes displayed levels similar to that of WT GSTO2. Rabbit reticulocyte lysate degradation studies showed that the GSTO1 Tyr32 and the GSTO2 Tyr130, Ile158, and Asp142/Ile158 variant allozymes were degraded more rapidly than were their respective WT allozymes. These observations raise the possibility of functionally significant pharmacogenomic variation in the expression and function of GSTO1 and GSTO2.


Clinical Cancer Research | 2007

Glutathione S-Transferase T1 and M1: Gene Sequence Variation and Functional Genomics

Ann M. Moyer; Oreste E. Salavaggione; Scott J. Hebbring; Irene Moon; Michelle A.T. Hildebrandt; Bruce W. Eckloff; Daniel J. Schaid; Eric D. Wieben; Richard M. Weinshilboum

Purpose: The glutathione S-transferases (GSTs) catalyze the glutathione conjugation of reactive electrophiles, including carcinogens and many antineoplastic drugs. GSTT1 and GSTM1 are polymorphically deleted, but the full range of genetic variation in these two genes has not yet been explored. We set out to systematically identify common polymorphisms in GSTT1 and GSTM1, followed by functional genomic studies. Experimental Design: First, multiplex PCR was used to determine GSTT1 and GSTM1 copy number in 400 DNA samples (100 each from 4 ethnic groups). Exons, splice junctions, and 5′-flanking regions (5′-FR) were then resequenced using DNA samples that contained at least one copy of GSTT1 or GSTM1. Results: Gene deletion frequencies among ethnic groups were from 33.5% to 73.5% for GSTT1 and from 50.5% to 78.0% for GSTM1. GSTT1 deletion data correlated with the results of mRNA microarray expression studies. The 18 single nucleotide polymorphisms (SNP) observed in GSTT1 included three nonsynonymous coding SNPs (cSNPs) and one single-nucleotide deletion, whereas the 51 GSTM1 SNPs included two nonsynonymous cSNPs. Two of the GSTT1 nonsynonymous cSNPs resulted in decreases in levels of immunoreactive protein to 56% and 12% of wild type (WT), whereas those in GSTM1 resulted in modest increases in protein levels. Reporter gene assays showed that one GSTT1 5′-FR haplotype, with a frequency of 32% in African-American subjects, resulted in an increase in transcription in JEG-3 cells to 351% of that for the WT sequence, and one GSTM1 5′-FR haplotype resulted in an increase in transcription in JEG-3 cells to 129% of WT. Conclusions: These observations suggest that functionally significant pharmacogenomic variation beyond GSTT1 and GSTM1 gene deletion may contribute to carcinogenesis or individual variation in antineoplastic drug therapy response.


Pharmacogenetics and Genomics | 2013

FKBP5 genetic variation: association with selective serotonin reuptake inhibitor treatment outcomes in major depressive disorder

Katarzyna A. Ellsworth; Irene Moon; Bruce W. Eckloff; Brooke L. Fridley; Gregory D. Jenkins; Anthony Batzler; Joanna M. Biernacka; Ryan Abo; Abra Brisbin; Yuan Ji; Scott J. Hebbring; Eric D. Wieben; David A. Mrazek; Richard M. Weinshilboum; Liewei Wang

Objectives FKBP51 (51 kDa immunophilin) acts as a modulator of the glucocorticoid receptor and a negative regulator of the Akt pathway. Genetic variation in FKBP5 plays a role in antidepressant response. The aim of this study was to comprehensively assess the role of genetic variation in FKBP5, identified by both Sanger and Next Generation DNA resequencing, as well as genome-wide single nucleotide polymorphisms (SNPs) associated with FKBP5 expression in the response to the selective serotonin reuptake inhibitor (SSRI) treatment of major depressive disorder. Methods We identified 657 SNPs in FKBP5 by Next Generation sequencing of 96 DNA samples from white patients, and 149 SNPs were selected for the genotyping together with 235 SNPs that were trans-associated with variation in FKBP5 expression in lymphoblastoid cells. A total of 529 DNA samples from the Mayo Clinic PGRN-SSRI Pharmacogenomic trial for which genome-wide SNPs had already been obtained were genotyped for these 384 SNPs, and associations with treatment outcomes were determined. The most significant SNPs were genotyped using 96 DNA samples from white non-Hispanic patients of the NIMH-supported Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study to attempt replication, followed by functional genomic studies. Results Genotype–phenotype association analysis indicated that rs352428 was associated with both 8-week treatment response in the Mayo study (odds ratio=0.49; P=0.003) and 6-week response in the STAR*D replication study (odds ratio=0.74; P=0.05). The electrophoresis mobility shift assay and the reporter gene assay confirmed the possible role of this SNP in transcription regulation. Conclusion This comprehensive FKBP5 sequence study provides insight into the role of common genetic polymorphisms that might influence SSRI treatment outcomes in major depressive disorder patients.


Clinical Cancer Research | 2008

Proteasome β Subunit Pharmacogenomics: Gene Resequencing and Functional Genomics

Liewei Wang; Shaji Kumar; Brooke L. Fridley; Krishna R. Kalari; Irene Moon; Linda L. Pelleymounter; Michelle A.T. Hildebrandt; Anthony Batzler; Bruce W. Eckloff; Eric D. Wieben; Philip R. Greipp

Purpose: The proteasome is a multisubunit cellular organelle that functions as a nonlysosomal threonine protease. Proteasomes play a critical role in the degradation of proteins, regulating a variety of cellular processes, and they are also the target for antineoplastic proteasome inhibitors. Genetic variation in proteasome subunits could influence both proteasome function and response to drug therapy. Experimental Design: We resequenced genes encoding the three active proteasome β subunits using 240 DNA samples from four ethnic groups and the β5 subunit gene in 79 DNA samples from multiple myeloma patients who had been treated with the proteasome inhibitor bortezomib. Resequencing was followed by functional studies of polymorphisms identified in the coding region and 3′-flanking region (3′-FR) of PSMB5, the gene encoding the target for clinically useful proteasome inhibitors. Results: Resequencing of 240 DNA samples identified a series of novel ethnic-specific polymorphisms that are not represented in public databases. The PSMB5 3′-FR 1042 G allele significantly increased transcription during reporter gene studies, observations confirmed by genotype-phenotype correlations between single nucleotide polymorphisms (SNP) in PSMB5 and mRNA expression in the 240 lymphoblastoid cell lines from which the resequenced DNA was obtained. Studies with patient DNA samples identified additional novel PSMB5 polymorphisms, including a SNP and an insertion in the 3′-FR. Reporter-gene studies indicated that these two novel polymorphisms might decrease transcription. Conclusions: These results show that nonsynonymous coding SNPs in the PSMB5 gene did not show significant effects on proteasome activity, but SNPs did influence transcription. Future studies might focus on regulatory region polymorphisms.


Journal of Pharmacology and Experimental Therapeutics | 2007

Human Hydroxysteroid Sulfotransferase SULT2B1 Pharmacogenomics: Gene Sequence Variation and Functional Genomics

Yuan Ji; Irene Moon; Jelena Zlatkovic; Oreste E. Salavaggione; Bianca A. Thomae; Bruce W. Eckloff; Eric D. Wieben; Daniel J. Schaid; Richard M. Weinshilboum

The human hydroxysteroid sulfotransferase (SULT) 2B1 gene is a member of the cytosolic SULT gene superfamily. The two SULT2B1 isoforms, SULT2B1a and SULT2B1b, are encoded by a single gene as a result of alternative transcription initiation and alternative splicing. SULT2B1b catalyzes the sulfonation of 3β-hydroxysteroid hormones and cholesterol, whereas SULT2B1a preferentially catalyzes pregnenolone sulfonation. We used a genotype-to-phenotype approach to identify and characterize common sequence variation in SULT2B1. Specifically, we resequenced all exons, splice junctions, and ∼2.5 kb of the 5′-flanking regions (FRs) for each isoform using 60 DNA samples each from African-American and Caucasian-American subjects. We observed 100 polymorphisms, including four nonsynonymous coding single nucleotide polymorphisms and one 6-base pair deletion—all within the “shared” region of the open reading frame. Functional genomic studies of the wild type (WT) and five variant allozymes for each isoform performed with a mammalian expression system showed that variant allozyme activities ranged from 64 to 88% of WT for SULT2B1a and from 76 to 98% for SULT2B1b. Relative levels of immunoreactive protein were similar to those for enzyme activity. Luciferase reporter gene constructs for 2.5 kb of the SULT2B1b 5′-FR displayed a cell line-dependent pattern of variation in activity. Finally, deletion of the proline-rich SULT2B1 carboxyl terminus resulted in intracellular protein aggregate formation and accelerated degradation of the truncated protein. These studies resulted in the identification of common SULT2B1 gene sequence variation, as well as insight into the effects of that variation on the function of this important steroid-metabolizing enzyme.


British Journal of Pharmacology | 2010

Pharmacogenetics of the mycophenolic acid targets inosine monophosphate dehydrogenases IMPDH1 and IMPDH2: gene sequence variation and functional genomics

Tse Yu Wu; Yi Peng; Linda L. Pelleymounter; Irene Moon; Bruce W. Eckloff; Eric D. Wieben; Vivien C. Yee; Richard M. Weinshilboum

BACKGROUND AND PURPOSE Inosine monophosphate dehydrogenases, encoded by IMPDH1 and IMPDH2, are targets for the important immunosuppressive drug, mycophenolic acid (MPA). Variation in MPA response may result, in part, from genetic variation in IMPDH1 and IMPDH2.


Drug Metabolism and Disposition | 2008

Gemcitabine Pharmacogenomics: Deoxycytidine Kinase and Cytidylate Kinase Gene Resequencing and Functional Genomics

Neslihan Aygun Kocabas; Pinar Aksoy; Linda L. Pelleymounter; Irene Moon; Jeong Seon Ryu; Judith A. Gilbert; Oreste E. Salavaggione; Bruce W. Eckloff; Eric D. Wieben; Vivien C. Yee; Richard M. Weinshilboum

Gemcitabine and other cytidine antimetabolites require metabolic activation by phosphorylation. Deoxycytidine kinase (DCK) and cytidine monophosphate kinase (CMPK) catalyze these reactions. We have applied a genotype-to-phenotype strategy to study DCK and CMPK pharmacogenomics. Specifically, we resequenced DCK and CMPK using 240 DNA samples, 60 each from African-American, Caucasian-American, Han Chinese-American, and Mexican-American subjects. We observed 28 DCK polymorphisms and 28 polymorphisms in CMPK, 33 of which were novel. Expression in COS-1 cells showed that variant allozyme enzyme activities ranged from 32 to 105% of the wild type (WT) for DCK and from 78 to 112% of WT for CMPK—with no significant differences in apparent Km values for either enzyme except for a DCK Val24/Ser122 double variant allozyme. Relative levels of DCK and CMPK immunoreactive protein in the COS-1 cells paralleled relative levels of enzyme activity and were significantly correlated for DCK (Rp = 0.89, P = 0.0004) but not for CMPK (Rp = 0.82, P = 0.095). The results of an analysis of DCK and CMPK structural models were compatible with the observed functional consequences of sequence alterations in variant allozymes. We also confirmed that the CMPK protein expressed in COS-1 cells and in a rabbit reticulocyte lysate was 196 rather than 228 amino acids in length. In summary, we determined common sequence variations in DCK and CMPK and systematically evaluated their functional implications. These gene sequence differences may contribute to variations in the metabolic activation of gemcitabine and other cytidine antimetabolites.


Pharmacogenetics and Genomics | 2012

Gemcitabine metabolic pathway genetic polymorphisms and response in patients with non-small cell lung cancer.

Liang Li; Daniel J. Schaid; Brooke L. Fridley; Krishna R. Kalari; Gregory D. Jenkins; Ryan Abo; Anthony Batzler; Irene Moon; Linda L. Pelleymounter; Bruce W. Eckloff; Eric D. Wieben; Zhifu D Sun; Ping Yang; L. Wang

Background and objective Gemcitabine is widely used to treat non-small cell lung cancer (NSCLC). The aim of this study was to assess the pharmacogenomic effects of the entire gemcitabine metabolic pathway, we genotyped single nucleotide polymorphisms (SNPs) within the 17 pathway genes using DNA samples from patients with NSCLC treated with gemcitabine to determine the effect of genetic variants within gemcitabine pathway genes on overall survival (OS) of patients with NSCLC after treatment of gemcitabine. Methods Eight of the 17 pathway genes were resequenced with DNA samples from Coriell lymphoblastoid cell lines (LCLs) using Sanger sequencing for all exons, exon–intron junctions, and 5′-, 3′-UTRs. A total of 107 tagging SNPs were selected on the basis of the resequencing data for the eight genes and on HapMap data for the remaining nine genes, followed by successful genotyping of 394 NSCLC patient DNA samples. Association of SNPs/haplotypes with OS was performed using the Cox regression model, followed by functional studies performed with LCLs and NSCLC cell lines. Results Five SNPs in four genes (CDA, NT5C2, RRM1, and SLC29A1) showed associations with OS of those patients with NSCLC, as well as nine haplotypes in four genes (RRM1, RRM2, SLC28A3, and SLC29A1) with a P value of less than 0.05. Genotype imputation using the LCLs was performed for a region of 200 kb surrounding those SNPs, followed by association studies with gemcitabine cytotoxicity. Functional studies demonstrated that downregulation of SLC29A1, NT5C2, and RRM1 in NSCLC cell lines altered cell susceptibility to gemcitabine. Conclusion These studies help in identifying biomarkers to predict gemcitabine response in NSCLC, a step toward the individualized chemotherapy of lung cancer.


Pharmacogenetics and Genomics | 2009

CYTOSOLIC 5’-NUCLEOTIDASE III (NT5C3): GENE SEQUENCE VARIATION AND FUNCTIONAL GENOMICS

Pinar Aksoy; Min Jia Zhu; Krishna R. Kalari; Irene Moon; Linda L. Pelleymounter; Bruce W. Eckloff; Eric D. Wieben; Vivien C. Yee; Richard M. Weinshilboum; Liewei Wang

Background 5′-Nucleotidases play a critical role in nucleotide pool balance and in the metabolism of nucleoside analogs such as gemcitabine and cytosine arabinoside (AraC). We previously performed an expression array association study with gemcitabine and AraC cytotoxicity using 197 human lymphoblastoid cell lines. One gene that was significantly associated with gemcitabine cytotoxicity was a nucleotidase family member, NT5C3. Very little is known with regard to the pharmacogenomics of this family of enzymes. Methods We set out to identify common genetic variation in NT5C3 by resequencing the gene and to determine the effect of that variation on NT5C3 protein function and potential effect on response to cytidine analogs. We identified 61 NT5C3 polymorphisms, 48 of which were novel, by resequencing 240 ethnically defined DNA samples. Functional studies were performed with one nonsynonymous (G847C, Asp283His) and four synonymous cSNPs (T9C, C276T, T306C, and G759A),as well as three combined variants (T276/His283, T276/C306, T276/C9). Results The His283 and T276/His283 constructs showed decreased levels of enzyme activity and protein. Substrate kinetic analysis showed no significant differences in Km values between wild type and His283 when cytidine monophosphate, AraCMP, and GemMP were used as substrates. An association study between single nucleotide polymorphisms (SNPs) and NT5C3 expression in the 240 cell lines from which DNA was extracted to resequence NT5C3 identified four SNPs that were significantly associated with NT5C3 expression. Electrophoretic mobility shift assays showed that two of those SNPs, I4(−114) and I6(9), altered DNA–protein binding patterns. These findings suggest that genetic variation in NT5C3 might affect protein function and potentially influence drug response.


Journal of Molecular and Cellular Cardiology | 2010

Natriuretic peptide pharmacogenetics: membrane metallo-endopeptidase (MME): common gene sequence variation, functional characterization and degradation.

Naveen L. Pereira; Pinar Aksoy; Irene Moon; Yi Peng; Margaret M. Redfield; John C. Burnett; Eric D. Wieben; Vivien C. Yee; Richard M. Weinshilboum

Membrane metallo-endopeptidase (MME), also known as neutral endopeptidase 24.11 (EC 3.4.24.11), is involved in the metabolism of natriuretic peptides that play a key role in modulating cardiac structure and function. Common genetic variation in MME has not been addressed by resequencing the gene using DNA from different ethnic populations. We set out to identify and functionally characterize common genetic variation in MME in three ethnic groups. DNA samples from 96 European-American, 96 African-American, and 96 Han Chinese-American healthy subjects were used to resequence MME. Ninety polymorphisms, 65 novel, were identified, including 8 nonsynonymous single nucleotide polymorphisms (nsSNPs). Expression constructs for the nsSNPs were created and COS-1 cells were transfected with constructs for wild type (WT) and variant allozymes. Recombinant proteins were analyzed by quantitative Western blot analysis and by a one-step fluorometric assay. A significant reduction in enzyme activity (21% of WT) and immunoreactive protein (29% of WT) for the Val73 variant allozyme was observed. Proteasome-mediated degradation and autophagy participated in the degradation of this variant allozyme. The chaperone proteins, BiP and GRP94, were upregulated after transfection with Val73 MME, suggesting protein misfolding, compatible with conclusions based on the MME X-ray crystal structure. Multiple novel polymorphisms of MME were identified in three ethnic groups. The Val73 variant allozyme displayed a significant decrease in MME protein quantity and activity, with degradation mediated by both proteasome and autophagy pathways. This polymorphism could have a significant effect on the metabolism of natriuretic peptides.

Collaboration


Dive into the Irene Moon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vivien C. Yee

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge