Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaiti Hasan is active.

Publication


Featured researches published by Gaiti Hasan.


Molecular and Cellular Neuroscience | 2000

Normal Phototransduction in Drosophila Photoreceptors Lacking an InsP3 Receptor Gene

Padinjat Raghu; Nansi Jo Colley; Rebecca Webel; Tracey James; Gaiti Hasan; Michal Danin; Zvi Selinger; Roger C. Hardie

The Drosophila light-sensitive channels TRP and TRPL are prototypical members of an ion channel family responsible for a variety of receptor-mediated Ca(2+) influx phenomena, including store-operated calcium influx. While phospholipase Cbeta is essential, downstream events leading to TRP and TRPL activation remain unclear. We investigated the role of the InsP(3) receptor (InsP(3)R) by generating mosaic eyes homozygous for a deficiency of the only known InsP(3)R gene in Drosophila. Absence of gene product was confirmed by RT-PCR, Western analysis, and immunocytochemistry. Mutant photoreceptors underwent late onset retinal degeneration; however, whole-cell recordings from young flies demonstrated that phototransduction was unaffected, quantum bumps, macroscopic responses in the presence and absence of external Ca(2+), light adaptation, and Ca(2+) release from internal stores all being normal. Using the specific TRP channel blocker La(3+) we demonstrated that both TRP and TRPL channel functions were unaffected. These results indicate that InsP(3)R-mediated store depletion does not underlie TRP and TRPL activation in Drosophila photoreceptors.


Current Biology | 1997

Disruption of the IP3 receptor gene of Drosophila affects larval metamorphosis and ecdysone release

K. Venkatesh; Gaiti Hasan

BACKGROUND The inositol 1,4,5-trisphosphate (IP3) receptor is an intracellular calcium channel that couples cell membrane receptors, via the second messenger IP3, to calcium signal transduction pathways within many types of cells. IP3 receptor function has been implicated in development, but the physiological processes affected by its function have yet to be elucidated. In order to identify these processes, we generated mutants in the IP3 receptor gene (itpr) of Drosophila and studied their phenotype during development. RESULTS All itpr mutant alleles were lethal. Lethality occurred primarily during the larval stages and was preceded by delayed moulting. Insect moulting occurs in response to the periodic release of the steroid hormone ecdysone which, in Drosophila, is synthesized and secreted by the ring gland. The observation of delayed moulting in the mutants, coupled with the expression of the IP3 receptor in the larval ring gland led us to examine the effect of the itpr alleles on ecdysone levels. On feeding ecdysone to mutant larvae, a partial rescue of the itpr phenotype was observed. In order to assess ecdysone levels at all larval stages, we examined transcripts of an ecdysone-inducible gene, E74; these transcripts were downregulated in larvae expressing each of the itpr alleles. CONCLUSIONS Our data show that disruption of the Drosophila IP3 receptor gene leads to lowered levels of ecdysone. Synthesis and release of ecdysone from the ring gland is thought to occur in response to a neurosecretory peptide hormone secreted by the brain. We propose that this peptide hormone requires an IP3 signalling pathway for ecdysone synthesis and release in Drosophila and other insects. This signal transduction mechanism which links neuropeptide hormones to steroid hormone secretion might be evolutionarily conserved.


The Journal of Neuroscience | 2008

Reduced Odor Responses from Antennal Neurons of Gqα, Phospholipase Cβ, and rdgA Mutants in Drosophila Support a Role for a Phospholipid Intermediate in Insect Olfactory Transduction

Pinky Kain; Tuhin Subra Chakraborty; Susinder Sundaram; Obaid Siddiqi; Veronica Rodrigues; Gaiti Hasan

Mechanisms by which G-protein-coupled odorant receptors transduce information in insects still need elucidation. We show that mutations in the Drosophila gene for Gqα (dgq) significantly reduce both the amplitude of the field potentials recorded from the whole antenna in responses to odorants as well as the frequency of evoked responses of individual sensory neurons. This requirement for Gqα is for adult function and not during antennal development. Conversely, brief expression of a dominant-active form of Gqα in adults leads to enhanced odor responses. To understand signaling downstream of Gqα in olfactory sensory neurons, genetic interactions of dgq were tested with mutants in genes known to affect phospholipid signaling. dgq mutant phenotypes were further enhanced by mutants in a PLCβ (phospholipase Cβ) gene, plc21C. Interestingly although, the olfactory phenotype of mutant alleles of diacylglycerol kinase (rdgA) was rescued by dgq mutant alleles. Our results suggest that Gqα-mediated olfactory transduction in Drosophila requires a phospholipid second messenger the levels of which are regulated by a cycle of phosphatidylinositol 1,4-bisphosphate breakdown and regeneration.


Cell | 1984

Complete nucleotide sequence of an unusual mobile element from trypanosoma brucei

Gaiti Hasan; Mervyn J. Turner; John S. Cordingley

The complete nucleotide sequence of a mobile element from Trypanosoma brucei is presented along with the sequence of its target site, which shows that the insertion has generated a 7 base pair direct repeat. The cloned copy of the element is a dimeric structure, one end of each monomer consisting of a stretch of 14 A residues preceded by a putative trypanosome polyadenylation signal. Six base pairs of DNA of unknown origin are found in the dimer between the two copies of the element. Evidence suggests that the element is present in the genome mainly as a monomer whose sequence is conserved across several species of trypanosome. The element contains an open reading frame encoding the same 160 amino acid protein in both sequenced copies and is extensively transcribed from both strands.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight.

Gayatri Venkiteswaran; Gaiti Hasan

Neuronal Ca2+ signals can affect excitability and neural circuit formation. Ca2+ signals are modified by Ca2+ flux from intracellular stores as well as the extracellular milieu. However, the contribution of intracellular Ca2+ stores and their release to neuronal processes is poorly understood. Here, we show by neuron-specific siRNA depletion that activity of the recently identified store-operated channel encoded by dOrai and the endoplasmic reticulum Ca2+ store sensor encoded by dSTIM are necessary for normal flight and associated patterns of rhythmic firing of the flight motoneurons of Drosophila melanogaster. Also, dOrai overexpression in flightless mutants for the Drosophila inositol 1,4,5-trisphosphate receptor (InsP3R) can partially compensate for their loss of flight. Ca2+ measurements show that Orai gain-of-function contributes to the quanta of Ca2+-release through mutant InsP3Rs and elevates store-operated Ca2+ entry in Drosophila neurons. Our data show that replenishment of intracellular store Ca2+ in neurons is required for Drosophila flight.


The Journal of Neuroscience | 2004

Loss of Flight and Associated Neuronal Rhythmicity in Inositol 1,4,5-Trisphosphate Receptor Mutants of Drosophila

Santanu Banerjee; Jisue Lee; K. Venkatesh; Chun-Fang Wu; Gaiti Hasan

Coordinated flight in winged insects requires rhythmic activity of the underlying neural circuit. Here, we show that Drosophila mutants for the inositol 1,4,5-trisphosphate (InsP3) receptor gene (itpr) are flightless. Electrophysiological recordings from thoracic indirect flight muscles show increased spontaneous firing accompanied by a loss of rhythmic flight activity patterns normally generated in response to a gentle puff of air. In contrast, climbing speed, the jump response, and electrical properties of the giant fiber pathway are normal, indicating that general motor coordination and neuronal excitability are much less sensitive to itpr mutations. All mutant phenotypes are rescued by expression of an itpr+ transgene in serotonin and dopamine neurons. Pharmacological and immunohistochemical experiments support the idea that the InsP3 receptor functions to modulate flight specifically through serotonergic interneurons. InsP3 receptor action appears to be important for normal development of the flight circuit and its central pattern generator.


Genetics | 2004

Genetic dissection of itpr gene function reveals a vital requirement in aminergic cells of Drosophila larvae.

Rohit Joshi; K. Venkatesh; R. Srinivas; Shalima Nair; Gaiti Hasan

Signaling by the second messenger inositol 1,4,5-trisphosphate is thought to affect several developmental and physiological processes. Mutants in the inositol 1,4,5-trisphosphate receptor (itpr) gene of Drosophila exhibit delays in molting while stronger alleles are also larval lethal. In a freshly generated set of EMS alleles for the itpr locus we have sequenced and identified single point mutations in seven mutant chromosomes. The predicted allelic strength of these mutants matches the observed levels of lethality. They range from weak hypomorphs to complete nulls. Interestingly, lethality in three heteroallelic combinations has a component of cold sensitivity. The temporal focus of cold sensitivity lies in the larval stages, predominantly at second instar. Coupled with our earlier observation that an itpr homozygous null allele dies at the second instar stage, it appears that there is a critical period for itpr gene function in second instar larvae. Here we show that the focus of this critical function lies in aminergic cells by rescue with UAS-itpr and DdCGAL4. However, this function does not require synaptic activity, suggesting that InsP3-mediated Ca2+ release regulates the neurohormonal action of serotonin.


Journal of Neurobiology | 2000

The inositol 1, 4, 5-trisphosphate receptor is required for maintenance of olfactory adaptation in Drosophila antennae

Monika Deshpande; K. Venkatesh; Veronica Rodrigues; Gaiti Hasan

A role for inositol 1,4,5-trisphosphate (IP(3)) as a second messenger during olfactory transduction has been postulated in both vertebrates and invertebrates. However, given the absence of either suitable pharmacological reagents or mutant alleles specific for the IP(3) signaling pathway, an unequivocal demonstration of IP(3) function in olfaction has not been possible. Here we have investigated the role of a well-established cellular target of IP(3)-the IP(3) receptor (IP(3)R)-in olfactory transduction in Drosophila. For this purpose we tested existing viable combinations of IP(3)R mutant alleles, as well as a newly generated set of viable itpr alleles, for olfactory function. In all of the viable allelic combinations primary olfactory responses were found to be normal. However, a subset of itpr alleles (including a null allele) exhibit faster recovery after a strong pulse of odor, indicating that the IP(3)R is required for maintenance of olfactory adaptation. Interestingly, this defect in adaptation is dominant for two of the alleles tested, suggesting that the mechanism of adaptation is sensitive to levels of the IP(3)R.


The Journal of Neuroscience | 2010

Inositol 1,4,5-trisphosphate receptor and dSTIM function in Drosophila insulin-producing neurons regulates systemic intracellular calcium homeostasis and flight

Neha Agrawal; Gayatri Venkiteswaran; Sufia Sadaf; Nisha Padmanabhan; Santanu Banerjee; Gaiti Hasan

Calcium (Ca2+) signaling is known to regulate the development, maintenance and modulation of activity in neuronal circuits that underlie organismal behavior. In Drosophila, intracellular Ca2+ signaling by the inositol 1,4,5-trisphosphate receptor and the store-operated channel (dOrai) regulates the formation and function of neuronal circuits that control flight. Here, we show that restoring InsP3R activity in insulin-producing neurons of flightless InsP3R mutants (itpr) during pupal development can rescue systemic flight ability. Expression of the store operated Ca2+ entry (SOCE) regulator dSTIM in insulin-producing neurons also suppresses compromised flight ability of InsP3R mutants suggesting that SOCE can compensate for impaired InsP3R function. Despite restricted expression of wild-type InsP3R and dSTIM in insulin-producing neurons, a global restoration of SOCE and store Ca2+ is observed in primary neuronal cultures from the itpr mutant. These results suggest that restoring InsP3R-mediated Ca2+ release and SOCE in a limited subset of neuromodulatory cells can influence systemic behaviors such as flight by regulating intracellular Ca2+ homeostasis in a large population of neurons through a non-cell-autonomous mechanism.


The Journal of Neuroscience | 2006

Compensation of inositol 1,4,5-trisphosphate receptor function by altering sarco-endoplasmic reticulum calcium ATPase activity in the Drosophila flight circuit.

Santanu Banerjee; Rohit Joshi; Gayatri Venkiteswaran; Neha Agrawal; Sonal Srikanth; Farhan Alam; Gaiti Hasan

Ionic Ca2+ functions as a second messenger to control several intracellular processes. It also influences intercellular communication. The release of Ca2+ from intracellular stores through the inositol 1,4,5-trisphosphate receptor (InsP3R) occurs in both excitable and nonexcitable cells. In Drosophila, InsP3R activity is required in aminergic interneurons during pupal development for normal flight behavior. By altering intracellular Ca2+ and InsP3 levels through genetic means, we now show that signaling through the InsP3R is required at multiple steps for generating the neural circuit required in air puff-stimulated Drosophila flight. Decreased Ca2+ release in aminergic neurons during development of the flight circuit can be compensated by reducing Ca2+ uptake from the cytosol to intracellular stores. However, this mode of increasing intracellular Ca2+ is insufficient for maintenance of flight patterns over time periods necessary for normal flight. Our study suggests that processes such as maintenance of wing posture and formation of the flight circuit require InsP3 receptor function at a slow timescale and can thus be modulated by altering levels of cytosolic Ca2+ and InsP3. In contrast, maintenance of flight patterns probably requires fast modulation of Ca2+ levels, in which the intrinsic properties of the InsP3R play a pivotal role.

Collaboration


Dive into the Gaiti Hasan's collaboration.

Top Co-Authors

Avatar

Bipan Kumar Deb

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar

Sufia Sadaf

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar

Shlesha Richhariya

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar

Veronica Rodrigues

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar

Gayatri Venkiteswaran

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar

K. Venkatesh

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar

Neha Agrawal

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar

Siddharth Jayakumar

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar

Sumita Chakraborty

National Centre for Biological Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge