Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Galit Granot is active.

Publication


Featured researches published by Galit Granot.


PLOS ONE | 2012

Downregulation of Mir-31, Mir-155, and Mir-564 in Chronic Myeloid Leukemia Cells

Oshrat Hershkovitz Rokah; Galit Granot; Adelina Ovcharenko; Shira Modai; Metsada Pasmanik-Chor; Amos Toren; Noam Shomron; Ofer Shpilberg

Background/Aims MicroRNAs (miRNAs) are short non-coding regulatory RNAs that control gene expression and play an important role in cancer development and progression. However, little is known about the role of miRNAs in chronic myeloid leukemia (CML). Our objective is to decipher a miRNA expression signature associated with CML and to determine potential target genes and signaling pathways affected by these signature miRNAs. Results Using miRNA microarrays and miRNA real-time PCR we characterized the miRNAs expression profile of CML cell lines and patients in reference to non-CML cell lines and healthy blood. Of all miRNAs tested, miR-31, miR-155, and miR-564 were down-regulated in CML cells. Down-regulation of these miRNAs was dependent on BCR-ABL activity. We next analyzed predicted targets and affected pathways of the deregulated miRNAs. As expected, in K562 cells, the expression of several of these targets was inverted to that of the miRNA putatively regulating them. Reassuringly, the analysis identified CML as the main disease associated with these miRNAs. MAPK, ErbB, mammalian target of rapamycin (mTOR) and vascular endothelial growth factor (VEGF) were the main molecular pathways related with these expression patterns. Utilizing Venn diagrams we found appreciable overlap between the CML-related miRNAs and the signaling pathways-related miRNAs. Conclusions The miRNAs identified in this study might offer a pivotal role in CML. Nevertheless, while these data point to a central disease, the precise molecular pathway/s targeted by these miRNAs is variable implying a high level of complexity of miRNA target selection and regulation. These deregulated miRNAs highlight new candidate gene targets allowing for a better understanding of the molecular mechanism underlying the development of CML, and propose possible new avenues for therapeutic treatment.


Experimental Hematology | 2010

Effect of imatinib on the signal transduction cascade regulating telomerase activity in K562 (BCR-ABL-positive) cells sensitive and resistant to imatinib.

Rahav Mor-Tzuntz; Orit Uziel; Ofer Shpilberg; Judith Lahav; Pia Raanani; Mary Bakhanashvili; Esther Rabizadeh; Yael Zimra; Meir Lahav; Galit Granot

OBJECTIVE Imatinib mesylate (IM) is a tyrosine kinase inhibitor selective for BCR-ABL and indicated for the treatment of chronic myeloid leukemia. It has recently been demonstrated that IM also targets other cellular components. Considering the significant role of telomerase in malignant transformation, we studied the effect of IM on telomerase activity (TA) and regulation in BCR-ABL-positive and -negative cells, sensitive and resistant to IM. MATERIALS AND METHODS Through combining telomeric repeat amplification protocol for detecting TA, reverse transcription polymerase chain reaction and Western blots for detecting RNA and protein levels of telomerase regulating proteins and fluorescence-activated cell sorting analysis, we showed that IM targets telomerase and the signal transduction cascade upstream of it. RESULTS IM significantly inhibited TA in BCR-ABL-positive and -negative cells and in chronic myeloid leukemia patients. TA inhibition was also observed in BCR-ABL positive cells resistant to IM at drug concentrations that did not lead to a reduction in BCR-ABL expression. In addition, a reduction in phosphorylated AKT and phosphorylated PDK-1 was also detected following IM incubation. CONCLUSIONS We demonstrate an inhibitory effect of IM on TA and on the AKT/PDK pathway. Because this effect was observed in cell expressing the BCR-ABL protein as well as cells not expressing it, and in cells sensitive as well as resistant to IM, it is reasonable to assume that the inhibitory effect of IM on TA is not mediated through known IM targets. The results of this study show that cells resistant to IM with regard to its effect on BCR-ABL could still be sensitive to IM treatment regarding other cellular components.


PLOS ONE | 2010

NAD(P)H Quinone Oxidoreductase Protects TAp63γ from Proteasomal Degradation and Regulates TAp63γ-Dependent Growth Arrest

Oshrat Hershkovitz Rokah; Ofer Shpilberg; Galit Granot

Background p63 is a member of the p53 transcription factor family. p63 is expressed from two promoters resulting in proteins with opposite functions: the transcriptionally active TAp63 and the dominant-negative ΔNp63. Similar to p53, the TAp63 isoforms induce cell cycle arrest and apoptosis. The ΔNp63 isoforms are dominant-negative variants opposing the activities of p53, TAp63 and TAp73. To avoid unnecessary cell death accompanied by proper response to stress, the expression of the p53 family members must be tightly regulated. NAD(P)H quinone oxidoreductase (NQO1) has recently been shown to interact with and inhibit the degradation of p53. Due to the structural similarities between p53 and p63, we were interested in studying the ability of wild-type and polymorphic, inactive NQO1 to interact with and stabilize p63. We focused on TAp63γ, as it is the most potent transcription activator and it is expected to have a role in tumor suppression. Principal Findings We show that TAp63γ can be degraded by the 20S proteasomes. Wild-type but not polymorphic, inactive NQO1 physically interacts with TAp63γ, stabilizes it and protects it from this degradation. NQO1-mediated TAp63γ stabilization was especially prominent under stress. Accordingly, we found that downregulation of NQO1 inhibits TAp63γ-dependant p21 upregulation and TAp63γ-induced growth arrest stimulated by doxorubicin. Conclusions/Significance Our report is the first to identify this new mechanism demonstrating a physical and functional relationship between NQO1 and the most potent p63 isoform, TAp63γ. These findings appoint a direct role for NQO1 in the regulation of TAp63γ expression, especially following stress and may therefore have clinical implications for tumor development and therapy.


Leukemia & Lymphoma | 2017

Ponatinib reduces viability, migration, and functionality of human endothelial cells

Ayala Gover-Proaktor; Galit Granot; Saar Shapira; Oshrat Raz; Oren Pasvolsky; Arnon Nagler; Dorit Lev; Aida Inbal; Ido Lubin; Pia Raanani; Avi Leader

Abstract Tyrosine kinase inhibitors (TKIs) have revolutionized the prognosis of chronic myeloid leukemia. With the advent of highly efficacious therapy, the focus has shifted toward managing TKI adverse effects, such as vascular adverse events (VAEs). We used an in vitro angiogenesis model to investigate the TKI-associated VAEs. Our data show that imatinib, nilotinib, and ponatinib reduce human umbilical vein endothelial cells (HUVECs) viability. Pharmacological concentrations of ponatinib induced apoptosis, reduced migration, inhibited tube formation of HUVECs, and had a negative effect on endothelial progenitor cell (EPC) function. Furthermore, in HUVECs transfected with VEGF receptor 2 (VEGFR2), the effect of ponatinib on tube formation and on all parameters representing normal endothelial cell function was less prominent than in control cells. This is the first report regarding the pathogenesis of ponatinib-associated VAEs. The antiangiogenic effect of ponatinib, possibly mediated by VEGFR2 inhibition, as shown in our study, is another piece in the intricate puzzle of TKI-associated VAEs.


Leukemia & Lymphoma | 2013

Mechanism of the antitumoral activity of deferasirox, an iron chelation agent, on mantle cell lymphoma.

Liat Vazana-Barad; Galit Granot; Rahav Mor-Tzuntz; Itai Levi; Martin Dreyling; Ilana Nathan; Ofer Shpilberg

Abstract Mantle cell lymphoma (MCL) characterized by the t(11;14)(q13;q32) translocation, resulting in cyclin D1 overexpression, is one of the most challenging lymphomas to treat. Iron chelators, such as deferasirox, have previously been shown to exhibit anti-proliferative properties; however, their effect on MCL cells has never been investigated. We showed that deferasirox exhibited antitumoral activity against the MCL cell lines HBL-2, Granta-519 and Jeko-1, with 50% inhibitory concentration (IC50) values of 7.99 ± 2.46 μM, 8.93 ± 2.25 μM and 31.86 ± 7.26 μM, respectively. Deferasirox induced apoptosis mediated through caspase-3 activation and decreased cyclin D1 protein levels resulting from increased proteasomal degradation. We also demonstrated down-regulation of phosphor-RB (Ser780) expression, which resulted in increasing levels of the E2F/RB complex and G1/S arrest. Finally, we showed that deferasirox activity was dependent on its iron chelating ability. The present data indicate that deferasirox, by down-regulating cyclin D1 and inhibiting its related signals, may constitute a promising adjuvant therapeutic molecule in the strategy for MCL treatment.


Cancer Letters | 2012

Second-generation tyrosine kinase inhibitors reduce telomerase activity in K562 cells

Saar Shapira; Galit Granot; Rahav Mor-Tzuntz; Pia Raanani; Orit Uziel; Meir Lahav; Ofer Shpilberg

In this study we present the effects of nilotinib and dasatinib on telomerase activity and regulation. Nilotinib and dasatinib strongly reduced telomerase activity in BCR-ABL-positive (K562) and BCR-ABL-negative (HL60) cells, demonstrating that their effect on telomerase activity is uncoupled from their effect on BCR-ABL. Nilotinib and dasatinib caused a substantial decrease in hTERT mRNA expression. Phospho-Sp1 regulates hTERT transcription. We detected a considerable decrease in Sp1 nuclear expression and binding to the hTERT promoter following exposure to the drugs. We also detected a reduction in Map kinase, known to phosphorylate Sp1. Telomerase is also activated and translocated to the nucleus when phosphorylated by AKT. We detected a decrease in phospho-AKT and a reduction in the nuclear expression of hTERT following exposure to nilotinib and dasatinib. In conclusion, we provide evidence for transcriptional and post-translational inhibition of telomerase by nilotinib and dasatinib which is not necessarily mediated via known targets of these tyrosine kinase inhibitors.


Leukemia Research | 2013

Retinoic acid induces adhesion and migration in NB4 cells through Pyk2 signaling

Adelina Ovcharenko; Galit Granot; Ofer Shpilberg; Pia Raanani

Since the introduction of all-trans-retinoic acid (ATRA) treatment for acute promyelocytic leukemia (APL) there has been increasing concern about extramedullary disease (EMD) progression despite favorable response in the bone marrow. We postulated that ATRA treatment enhances migration and adhesion abilities possibly enabling APL cells to inhabit extramedullary sites. We revealed an increase in adhesion, migration and invasion capabilities of NB4 cells following ATRA treatment. ATRA induced upregulation of Pyk2 mRNA, protein and phosphorylation levels and enhanced Pyk2 interaction with paxillin and vinculin. Pyk2 inhibition resulted in a reduction of NB4 cell adhesion and migration following ATRA treatment. These results indicate that in vitro Pyk2 might function to regulate cell adhesion and motility following ATRA treatment and its upregulated expression may contribute to EMD development in APL patients.


Leukemia & Lymphoma | 2018

Bosutinib, dasatinib, imatinib, nilotinib, and ponatinib differentially affect the vascular molecular pathways and functionality of human endothelial cells

Ayala Gover-Proaktor; Galit Granot; Metsada Pasmanik-Chor; Oren Pasvolsky; Saar Shapira; Oshrat Raz; Pia Raanani; Avi Leader

Abstract The tyrosine kinase inhibitors (TKIs), nilotinib, ponatinib, and dasatinib (but not bosutinib or imatinib), are associated with vascular adverse events (VAEs) in chronic myeloid leukemia (CML). Though the mechanism is inadequately understood, an effect on vascular cells has been suggested. We investigated the effect of imatinib, nilotinib, dasatinib, bosutinib, and ponatinib on tube formation, cell viability, and gene expression of human vascular endothelial cells (HUVECs). We found a distinct genetic profile in HUVECs treated with dasatinib, ponatinib, and nilotinib compared to bosutinib and imatinib, who resembled untreated samples. However, unique gene expression and molecular pathway alterations were detected between dasatinib, ponatinib, and nilotinib. Angiogenesis/blood vessel-related pathways and HUVEC function (tube formation/viability) were adversely affected by dasatinib, ponatinib, and nilotinib but not by imatinib or bosutinib. These results correspond to the differences in VAE profiles of these TKIs, support a direct effect on vascular cells, and provide direction for future research.


European Journal of Human Genetics | 2013

Clinical utility gene card for: familial polycythaemia vera.

Kais Hussein; Galit Granot; Ofer Shpilberg; Hans Kreipe

1.5 Mutational spectrum Somatic JAK2 exon 14 G1849T/V617F (80–100% of all familial and sporadic PV patients).1–4 Multiple somatic JAK2 exon 12 (non-V617F) mutations (o10% of familial and sporadic PV patients).5–8 Germ-line JAK2 polymorphism rs10974944.9–12 Multiple somatic TET2 exons 3–12 mutations (10–15% of V617Fpositive familial and sporadic PV patients).12–14 Germ-line EGLN1 G471C/G147H (JAK2 V617F-positive familial PV case).15 Recurrent somatic cytogenetic aberrations in 20–30% of familial PV and sporadic PV (þ 8, þ 9, del(9p), del(13q) and del(20q)).16,17


Blood | 2006

BCL6 is regulated by p53 through a response element frequently disrupted in B-cell non-Hodgkin lymphoma

Ofer Margalit; Hila Wiener Amram; Ninette Amariglio; Amos J. Simon; Sigal Shaklai; Galit Granot; Neri Minsky; Avichai Shimoni; Alon Harmelin; David Givol; Mordechai Shohat; Moshe Oren; Gideon Rechavi

Collaboration


Dive into the Galit Granot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge