Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Metsada Pasmanik-Chor is active.

Publication


Featured researches published by Metsada Pasmanik-Chor.


Journal of Immunology | 2014

Infiltrating Monocyte-Derived Macrophages and Resident Kupffer Cells Display Different Ontogeny and Functions in Acute Liver Injury

Ehud Zigmond; Shany Samia-Grinberg; Metsada Pasmanik-Chor; Eli Brazowski; Oren Shibolet; Zamir Halpern; Chen Varol

The liver has a remarkable capacity to regenerate after injury; yet, the role of macrophages (MF) in this process remains controversial mainly due to difficulties in distinguishing between different MF subsets. In this study, we used a murine model of acute liver injury induced by overdose of N-acetyl-p-aminophenol (APAP) and defined three distinct MF subsets that populate the liver following injury. Accordingly, resident Kupffer cells (KC) were significantly reduced upon APAP challenge and started recovering by self-renewal at resolution phase without contribution of circulating Ly6Chi monocytes. The latter were recruited in a CCR2- and M-CSF–mediated pathway at the necroinflammatory phase and differentiated into ephemeral Ly6Clo MF subset at resolution phase. Moreover, their inducible ablation resulted in impaired recovery. Microarray-based molecular profiling uncovered high similarity between steady-state KC and those recovered at the resolution phase. In contrast, KC and monocyte-derived MF displayed distinct prorestorative genetic signature at the resolution phase. Finally, we show that infiltrating monocytes acquire a prorestorative polarization manifested by unique expression of proangiogenesis mediators and genes involved with inhibition of neutrophil activity and recruitment and promotion of their clearance. Collectively, our results present a novel phenotypic, ontogenic, and molecular definition of liver-MF compartment following acute injury.


American Journal of Human Genetics | 2007

Autosomal Recessive Ichthyosis with Hypotrichosis Caused by a Mutation in ST14, Encoding Type II Transmembrane Serine Protease Matriptase

Lina Basel-Vanagaite; Revital Attia; Akemi Ishida-Yamamoto; Limor Rainshtein; Dan Ben Amitai; Raziel Lurie; Metsada Pasmanik-Chor; Margarita Indelman; Alex Zvulunov; Shirley Saban; Nurit Magal; Eli Sprecher; Mordechai Shohat

In this article, we describe a novel autosomal recessive ichthyosis with hypotrichosis syndrome, characterized by congenital ichthyosis associated with abnormal hair. Using homozygosity mapping, we mapped the disease locus to 11q24.3-q25. We screened the ST14 gene, which encodes matriptase, since transplantation of skin from matriptase(-/-)-knockout mice onto adult athymic nude mice has been shown elsewhere to result in an ichthyosislike phenotype associated with almost complete absence of erupted pelage hairs. Mutation analysis revealed a missense mutation, G827R, in the highly conserved peptidase S1-S6 domain. Marked skin hyperkeratosis due to impaired degradation of the stratum corneum corneodesmosomes was observed in the affected individuals, which suggests that matriptase plays a significant role in epidermal desquamation.


Journal of Medical Genetics | 2011

Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN

Gal Maydan; Iris Noyman; Adi Har-Zahav; Ziva Ben Neriah; Metsada Pasmanik-Chor; Adva Yeheskel; Adi Albin-Kaplanski; Idit Maya; Nurit Magal; Efrat Birk; Amos J. Simon; Ayelet Halevy; Gideon Rechavi; Mordechai Shohat; Rachel Straussberg; Lina Basel-Vanagaite

Background This study reports on a hitherto undescribed autosomal recessive syndrome characterised by dysmorphic features and multiple congenital anomalies together with severe neurological impairment, chorea and seizures leading to early death, and the identification of a gene involved in the pathogenesis of the disease. Methods Homozygosity mapping was performed using Affymetrix Human Mapping 250k NspI arrays. Sequencing of all coding exons of the candidate genes was performed with primer sets designed using the Primer3 program. Fluorescence activated cell sorting was performed using conjugated antibody to CD59. Staining, acquisition and analysis were performed on a FACSCalibur flow cytometer. Results Using homozygosity mapping, the study mapped the disease locus to 18q21.32–18q22.1 and identified the disease-causing mutation, c.2126G→A (p.Arg709Gln), in PIGN, which encodes glycosylphosphatidylinositol (GPI) ethanolamine phosphate transferase 1, a protein involved in GPI-anchor biosynthesis. Arginine at the position 709 is a highly evolutionarily conserved residue located in the PigN domain. The expression of GPI linked protein CD59 on fibroblasts from patients as compared to that in a control individual showed a 10-fold reduction in expression, confirming the pathogenic consequences of the mutation on GPI dependent protein expression. Conclusions The abundant expression of PIGN in various tissues is compatible with the diverse phenotypic features observed in the patients and with the involvement of multiple body systems. The presence of developmental delay, hypotonia, and epilepsy combined with multiple congenital anomalies, especially anorectal anomalies, should lead a clinician to suspect a GPI deficiency related disorder.


Annals of Neurology | 2006

Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis

Lina Basel-Vanagaite; Liora Muncher; Rachel Straussberg; Metsada Pasmanik-Chor; Michal Yahav; Limor Rainshtein; Christopher A. Walsh; Nurit Magal; Ellen Taub; Valerie Drasinover; Hanna Shalev; Revital Attia; Gideon Rechavi; Amos J. Simon; Mordechai Shohat

The objective of this study was to identify the gene causing autosomal recessive infantile bilateral striatal necrosis.


Human Mutation | 1998

Prevalence of glucocerebrosidase mutations in the Israeli Ashkenazi Jewish population.

Mia Horowitz; Metsada Pasmanik-Chor; Zvi Borochowitz; Tzipora C. Falik-Zaccai; Keren Heldmann; Rivka Carmi; Ruth Parvari; Hannah Beit-Or; Boleslav Goldman; Lea Peleg; Ephrat Levy-Lahad; Paul Renbaum; Searl Legum; Ruth Shomrat; Hannah Yeger; Dalit Benbenisti; Ruth Navon; Vardit Dror; Mordechai Shohat; Nurit Magal; Nir Navot; Nurit Eyal

Gaucher disease is the most prevalent inherited disease among Ashkenazi Jews. It is very heterogeneous due to a large number of mutations within the glucocerebrosidase gene, whose impaired activity is the cause for this disease. Aiming at determining Gaucher carrier frequency among the Ashkenazi Jewish population in Israel, 1,208 individuals were molecularly diagnosed for six mutations known to occur among Ashkenazi Jewish Gaucher patients, using the newly developed Pronto™ Gaucher kit. The following mutations were tested: N370S, 84GG, IVS2+1, D409H, L444P, and V394L. Molecular testing of these mutations also allows identification of the recTL allele. The results indicated that Gaucher carrier frequency is 1:17 within the tested population. The prevalence of N370S carriers is 1:17.5. This implies that ˜1:1225 Ashkenazi Jews will be homozygous for the N370S mutation. Actually, in our study of 1,208 individuals one was found to be homozygous for the N370S mutation. The actual number of known Ashkenazi Jewish Gaucher patients with this genotype is much lower than that expected according to the frequency of the N370S mutation, suggesting a low penetrance of this mutation. Results of loading experiments in cells homozygous for the N370S mutation, as well as cells homozygous for the L444P and the D409H mutations, exemplified this phenomenon. Hum Mutat 12:240–244, 1998.


PLOS ONE | 2012

Downregulation of Mir-31, Mir-155, and Mir-564 in Chronic Myeloid Leukemia Cells

Oshrat Hershkovitz Rokah; Galit Granot; Adelina Ovcharenko; Shira Modai; Metsada Pasmanik-Chor; Amos Toren; Noam Shomron; Ofer Shpilberg

Background/Aims MicroRNAs (miRNAs) are short non-coding regulatory RNAs that control gene expression and play an important role in cancer development and progression. However, little is known about the role of miRNAs in chronic myeloid leukemia (CML). Our objective is to decipher a miRNA expression signature associated with CML and to determine potential target genes and signaling pathways affected by these signature miRNAs. Results Using miRNA microarrays and miRNA real-time PCR we characterized the miRNAs expression profile of CML cell lines and patients in reference to non-CML cell lines and healthy blood. Of all miRNAs tested, miR-31, miR-155, and miR-564 were down-regulated in CML cells. Down-regulation of these miRNAs was dependent on BCR-ABL activity. We next analyzed predicted targets and affected pathways of the deregulated miRNAs. As expected, in K562 cells, the expression of several of these targets was inverted to that of the miRNA putatively regulating them. Reassuringly, the analysis identified CML as the main disease associated with these miRNAs. MAPK, ErbB, mammalian target of rapamycin (mTOR) and vascular endothelial growth factor (VEGF) were the main molecular pathways related with these expression patterns. Utilizing Venn diagrams we found appreciable overlap between the CML-related miRNAs and the signaling pathways-related miRNAs. Conclusions The miRNAs identified in this study might offer a pivotal role in CML. Nevertheless, while these data point to a central disease, the precise molecular pathway/s targeted by these miRNAs is variable implying a high level of complexity of miRNA target selection and regulation. These deregulated miRNAs highlight new candidate gene targets allowing for a better understanding of the molecular mechanism underlying the development of CML, and propose possible new avenues for therapeutic treatment.


Traffic | 2006

Recycling to the Plasma Membrane is Delayed in EHD1 Knockout Mice

Debora Rapaport; Wojtek Auerbach; Naava Naslavsky; Metsada Pasmanik-Chor; Emilia Galperin; Amos Fein; Steve Caplan; Alexandra L. Joyner; Mia Horowitz

EHD1 is a member of the EHD family that contains four mammalian homologs. Among the invertebrate orthologs are a single Drosophila and Caenorhabditis elegans proteins and two plant members. They all contain three modules, a N‐terminal domain that contains nucleotide‐binding motifs, a central coiled–coil domain involved in oligomerization and a C‐terminal region that harbors the EH domain. Studies in C. elegans and EHD1 depletion by RNA interference in human cells have demonstrated that it regulates recycling of membrane proteins. We addressed the physiological role of EHD1 through its inactivation in the mouse. Ehd1 knockout mice were indistinguishable from normal mice, had a normal life span and showed no histological abnormalities. Analysis of transferrin uptake in Ehd1–/– embryonic fibroblasts demonstrated delayed recycling to the plasma membrane with accumulation of transferrin in the endocytic recycling compartment. Our results corroborate the established role of EHD1 in the exit of membrane proteins from recycling endosomes in vivo in a mouse model.


PLOS ONE | 2011

Insulin-Producing Cells Generated from Dedifferentiated Human Pancreatic Beta Cells Expanded In Vitro

Holger A. Russ; Elad Sintov; Leeat Anker-Kitai; Orr Friedman; Ayelet Lenz; Ginat Toren; Chen Farhy; Metsada Pasmanik-Chor; Varda Oron-Karni; Philippe Ravassard; Shimon Efrat

Background Expansion of beta cells from the limited number of adult human islet donors is an attractive prospect for increasing cell availability for cell therapy of diabetes. However, attempts at expanding human islet cells in tissue culture result in loss of beta-cell phenotype. Using a lineage-tracing approach we provided evidence for massive proliferation of beta-cell-derived (BCD) cells within these cultures. Expansion involves dedifferentiation resembling epithelial-mesenchymal transition (EMT). Epigenetic analyses indicate that key beta-cell genes maintain open chromatin structure in expanded BCD cells, although they are not transcribed. Here we investigated whether BCD cells can be redifferentiated into beta-like cells. Methodology/Principal Finding Redifferentiation conditions were screened by following activation of an insulin-DsRed2 reporter gene. Redifferentiated cells were characterized for gene expression, insulin content and secretion assays, and presence of secretory vesicles by electron microscopy. BCD cells were induced to redifferentiate by a combination of soluble factors. The redifferentiated cells expressed beta-cell genes, stored insulin in typical secretory vesicles, and released it in response to glucose. The redifferentiation process involved mesenchymal-epithelial transition, as judged by changes in gene expression. Moreover, inhibition of the EMT effector SLUG (SNAI2) using shRNA resulted in stimulation of redifferentiation. Lineage-traced cells also gave rise at a low rate to cells expressing other islet hormones, suggesting transition of BCD cells through an islet progenitor-like stage during redifferentiation. Conclusions/Significance These findings demonstrate for the first time that expanded dedifferentiated beta cells can be induced to redifferentiate in culture. The findings suggest that ex-vivo expansion of adult human islet cells is a promising approach for generation of insulin-producing cells for transplantation, as well as basic research, toxicology studies, and drug screening.


Journal of Molecular Medicine | 2013

Platinum-resistance in ovarian cancer cells is mediated by IL-6 secretion via the increased expression of its target cIAP-2

Sharon Cohen; Ilan Bruchim; Dror Graiver; Zoharia Evron; Varda Oron-Karni; Metsada Pasmanik-Chor; Ram Eitan; J. Bernheim; Hanoch Levavi; Ami Fishman; Eliezer Flescher

Ovarian carcinoma patients are initially responsive to platinum-based therapy, but eventually become refractory to treatment due to the development of platinum chemoresistance. Elevated levels of interleukin-6 (IL-6) in the sera and ascites of these patients predict poor clinical outcome. Our goal was to analyze the interaction between cisplatin and cisplatin-resistant ovarian cancer cells, and to identify means of circumventing platinum resistance. We studied ovarian carcinoma cell lines and cells drawn from ovarian carcinoma patients. Gene array analyses were performed on ovarian carcinoma cells upon treatment with cisplatin, and the results were validated by ELISA and Western blotting (WB). Cytotoxicity assays were performed on anti-IL-6 Ab-, IL-6-, and cellular inhibitor of apoptosis 2 (cIAP-2) siRNA-treated cells, following cisplatin addition. Our results revealed a highly significant increase in IL-6 and cIAP-2 mRNA and protein levels upon treatment with cisplatin. WB analysis of cisplatin-treated cells exhibited decreased cIAP-2 expression level following anti-IL-6 Ab addition. Furthermore, IL-6 by itself, significantly increased cIAP-2 levels in ovarian carcinoma cells. Finally, cytotoxicity assays showed sensitization to cisplatin following the addition of IL-6 and cIAP-2 inhibitors. In conclusion, cisplatin treatment of ovarian carcinoma cells upregulates IL-6 and cIAP-2 levels while their inhibition significantly sensitizes them to cisplatin. Here, we present cIAP-2 as a novel inducer of platinum resistance in ovarian carcinoma cells, and suggest an axis beginning with an encounter between cisplatin and these cells, mediated sequentially by IL-6 and cIAP-2, resulting in cisplatin resistance. Consequently, we propose that combining IL-6/cIAP-2 inhibitors with cisplatin will provide new hope for ovarian carcinoma patients by improving the current treatment.


PLOS Genetics | 2013

Pax6 Regulates Gene Expression in the Vertebrate Lens through miR-204

Ohad Shaham; Karen Gueta; Eyal Mor; Pazit Oren-Giladi; Dina Grinberg; Qing Xie; Ales Cvekl; Noam Shomron; Noa Davis; Maya Keydar-Prizant; Shaul Raviv; Metsada Pasmanik-Chor; Rachel E. Bell; Carmit Levy; Raffaella Avellino; Sandro Banfi; Ivan Conte; Ruth Ashery-Padan

During development, tissue-specific transcription factors regulate both protein-coding and non-coding genes to control differentiation. Recent studies have established a dual role for the transcription factor Pax6 as both an activator and repressor of gene expression in the eye, central nervous system, and pancreas. However, the molecular mechanism underlying the inhibitory activity of Pax6 is not fully understood. Here, we reveal that Trpm3 and the intronic microRNA gene miR-204 are co-regulated by Pax6 during eye development. miR-204 is probably the best known microRNA to function as a negative modulator of gene expression during eye development in vertebrates. Analysis of genes altered in mouse Pax6 mutants during lens development revealed significant over-representation of miR-204 targets among the genes up-regulated in the Pax6 mutant lens. A number of new targets of miR-204 were revealed, among them Sox11, a member of the SoxC family of pro-neuronal transcription factors, and an important regulator of eye development. Expression of Trpm/miR-204 and a few of its targets are also Pax6-dependent in medaka fish eyes. Collectively, this study identifies a novel evolutionarily conserved mechanism by which Pax6 controls the down-regulation of multiple genes through direct up-regulation of miR-204.

Collaboration


Dive into the Metsada Pasmanik-Chor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge