Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gan Wang is active.

Publication


Featured researches published by Gan Wang.


Science | 1996

Mutagenesis in Mammalian Cells Induced by Triple Helix Formation and Transcription-Coupled Repair

Gan Wang; Michael M. Seidman; Peter M. Glazer

When mammalian cells were treated with triplex-forming oligonucleotides of sufficient binding affinity, mutations were specifically induced in a simian virus 40 vector contained within the cells. Triplex-induced mutagenesis was not detected in xeroderma pigmentosum group A cells nor in Cockaynes syndrome group B cells, indicating a requirement for excision repair and for transcription-coupled repair, respectively, in the process. Triplex formation was also found to stimulate DNA repair synthesis in human cell extracts, in a pattern correlating with the inhibition of transcription in such extracts. These findings may have implications for therapeutic applications of triplex DNA and raise the possibility that naturally occurring triple helices are a source of genetic instability.


Molecular and Cellular Biology | 1995

Targeted mutagenesis in mammalian cells mediated by intracellular triple helix formation.

Gan Wang; Daniel Levy; Michael M. Seidman; Peter M. Glazer

As an alternative to standard gene transfer techniques for genetic manipulation, we have investigated the use of triple helix-forming oligonucleotides to target mutations to selected genes within mammalian cells. By treating monkey COS cells with oligonucleotides linked to psoralen, we have generated targeted mutations in a simian virus 40 (SV40) vector contained within the cells via intracellular triple helix formation. Oligonucleotide entry into the cells and sequence-specific triplex formation within the SV40 DNA deliver the psoralen to the targeted site. Photoactivation of the psoralen by long-wavelength UV light yields adducts and thereby mutations at that site. We engineered into the SV40 vector novel supF mutation reporter genes containing modified polypurine sites amenable to triplex formation. By comparing the abilities of a series of oligonucleotides to target these new sites, we show that targeted mutagenesis in vivo depends on the strength and specificity of the third-strand binding. Oligonucleotides with weak target site binding affinity or with only partial target site homology were ineffective at inducing mutations in the SV40 vectors within the COS cells. We also show that the targeted mutagenesis is dependent on the oligonucleotide concentration and is influenced by the timing of the oligonucleotide treatment and of the UV irradiation of the cells. Frequencies of intracellular targeted mutagenesis in the range of 1 to 2% were observed, depending upon the conditions of the experiment. DNA sequence analysis revealed that most of the mutations were T.A-to-A.T transversions precisely at the targeted psoralen intercalation site. Several deletions encompassing that site were also seen. The ability to target mutations to selected sites within mammalian cells by using modified triplex-forming oligonucleotides may provide a new research tool and may eventually lead to therapeutic applications.


Journal of Biological Chemistry | 1999

Nuclear Import of Plasmid DNA in Digitonin-permeabilized Cells Requires Both Cytoplasmic Factors and Specific DNA Sequences

G. Lee Wilson; Brenda S. Dean; Gan Wang; David A. Dean

Although much is known about the mechanisms of signal-mediated protein and RNA nuclear import and export, little is understood concerning the nuclear import of plasmid DNA. Plasmids between 4.2 and 14.4 kilobases were specifically labeled using a fluorescein-conjugated peptide nucleic acid clamp. The resulting substrates were capable of gene expression and nuclear localization in microinjected cells in the absence of cell division. To elucidate the requirements for plasmid nuclear import, a digitonin-permeabilized cell system was adapted to follow the nuclear localization of plasmids. Nuclear import of labeled plasmid was time- and energy-dependent, was inhibited by the lectin wheat germ agglutinin, and showed an absolute requirement for cytoplasmic extract. Addition of nuclear extract alone did not support plasmid nuclear import but in combination with cytoplasm stimulated plasmid nuclear localization. Whereas addition of purified importin α, importin β, and RAN was sufficient to support protein nuclear import, plasmid nuclear import also required the addition of nuclear extract. Finally, nuclear import of plasmid DNA was sequence-specific, requiring a region of the SV40 early promoter and enhancer. Taken together, these results confirm and extend our findings in microinjected cells and support a protein-mediated mechanism for plasmid nuclear import.


Journal of Biological Chemistry | 1995

Altered Repair of Targeted Psoralen Photoadducts in the Context of an Oligonucleotide-mediated Triple Helix

Gan Wang; Peter M. Glazer

Oligonucleotides can bind as third strands of DNA in a sequence-specific manner to form triple helices. Psoralen-conjugated, triplex-forming oligonucleotides (TFOs) have been used for the site-specific modification of DNA to inhibit transcription and to target mutations to selected genes. Such strategies, however, must take into account the ability of the cell to repair the triplex-directed lesion. We report experiments showing that the pattern of mutations produced by triplex-targeted psoralen adducts in an SV40 shuttle vector in monkey COS cells can be influenced by the associated third strand. Mutations induced by psoralen adducts in the context of a TFO of length 10 were the same as those generated by isolated adducts but were found to be different from those generated in the presence of a TFO of length 30 at the same target site. In complementary experiments, HeLa whole cell extracts were used to directly assess repair of the TFO-directed psoralen adducts in vitro. Excision of the damaged DNA was inhibited in the context of the 30-mer TFO, but not the 10-mer. These results suggest that an extended triple helix of length 30, which exceeds the typical size of the nucleotide excision repair patch in mammalian cells, can alter repair of an associated psoralen adduct. We present a model correlating these results and proposing that the incision steps in nucleotide excision repair in mammalian cells can be blocked by the presence of a third strand of sufficient length and binding affinity, thereby changing the pattern of mutations. These results may have implications for the use of triplex-forming oligonucleotides for genetic manipulation, and they may lead to the use of such oligonucleotides as tools to probe DNA repair pathways.


Journal of Biological Chemistry | 2006

The Involvement of Ataxia-telangiectasia Mutated Protein Activation in Nucleotide Excision Repair-facilitated Cell Survival with Cisplatin Treatment

Stephanie L. Colton; Xiaoxin S. Xu; Y. Alan Wang; Gan Wang

DNA damage can lead to either DNA repair with cell survival or to apoptotic cell death. Although the biochemical processes underlying DNA repair and apoptosis have been extensively studied, the mechanisms by which cells determine whether the damage will be repaired or the apoptotic pathway will be activated is largely unknown. We have studied the role of nucleotide excision repair (NER) in cisplatin DNA damage-induced apoptotic cell death using both normal human fibroblasts and NER-defective xeroderma pigmentosum (XP) XPA and XPG cells. The caspase-3 activation experiment demonstrated a greatly increased casapse-3 activation in the NER-defective cells following cisplatin treatment. The flow cytometry experiment revealed an altered cell cycle arrest pattern of the NER-defective cells following cisplatin treatment. The results obtained from the Western blot experiment showed that NER defects resulted in enhanced CHK1 phosphorylation and p21 induction after cisplatin treatment. The cisplatin treatment-induced ATM phosphorylation, however, was attenuated in NER-defective cells. The results obtained from our immunoprecipitation experiment further demonstrated that the ATM protein interacted with the TFIIH basal transcription factor and the XPG protein of the NER pathway. It also showed that a functional XPC protein was required for the association of the ATM protein to genomic DNA. These results suggest that the NER process may prevent the cisplatin treatment-induced apoptosis by activating the ATM protein, and that the presence of the XPC protein is essential for recruiting the ATM protein to the DNA template.


Cancer Research | 2007

Attenuated expression of xeroderma pigmentosum group C is associated with critical events in human bladder cancer carcinogenesis and progression.

Zhiwen Chen; Jin Yang; Gan Wang; Bo Song; Jin Li; Zhigang Xu

Xeroderma pigmentosum group C (XPC) is an important DNA damage recognition protein that binds to damaged DNA at a very early stage during DNA repair. The XPC protein is also involved in DNA damage-induced cell cycle checkpoint regulation and apoptosis. XPC defects are associated with many types of solid tumors. The mechanism of the XPC protein in cancer progression, however, remains unclear. In this report, we showed the strong correlation between bladder cancer progression and attenuated XPC protein expression using tissues derived from patients with bladder cancer. The results obtained from our immunohistochemical studies further revealed a strong correlation of XPC deficiency, p53 mutation, and the degree of malignancy of bladder tumors. In addition, the results obtained from our studies have also shown that HT1197 bladder cancer cells, which carry a low-level XPC protein, exhibited a decreased DNA repair capability and were resistant to cisplatin treatment. When an XPC gene cDNA-expression vector was stably transfected into the HT1197 cells, however, the cisplatin treatment-induced apoptotic cell death was increased. Increased p53 and p73 responses following cisplatin treatment were also observed in HT1197 cells stably transfected with XPC cDNA. Taken together, these results suggest that XPC deficiency is an important contributing factor in bladder tumor progression and bladder cancer cell drug resistance.


Cell Research | 2004

The involvement of XPC protein in the cisplatin DNA damaging treatment-mediated cellular response

Gan Wang; Alan A. Dombkowski; Lynn Chuang; Xiao Xin S Xu

ABSTRACTRecognition of DNA damage is a critical step for DNA damage-mediated cellular response. XPC is an important DNA damage recognition protein involved in nucleotide excision repair (NER). We have studied the XPC protein in cisplatin DNA damaging treatment-mediated cellular response. Comparison of the microarray data from both normal and XPC-defective human fibroblasts identified 861 XPC-responsive genes in the cisplatin treatment (with minimum fold change≥1.5). The cell cycle and cell proliferation-related genes are the most affected genes by the XPC defect in the treatment. Many other cellular function genes, especially the DNA repair and signal transduction-related genes, were also affected by the XPC defect in the treatment. To validate the microarray data, the transcription levels of some microarray-identified genes were also determined by an RT-PCR based real time PCR assay. The real time PCR results are consistent with the microarray data for most of the tested genes, indicating the reliability of the microarray data. To further validate the microarray data, the cisplatin treatment-mediated caspase-3 activation was also determined. The Western blot hybridization results indicate that the XPC defect greatly attenuates the cisplatin treatment-mediated Caspase-3 activation. We elucidated the role of p53 protein in the XPC protein DNA damage recognition-mediated signaling process. The XPC defect reduces the cisplatin treatment-mediated p53 response. These results suggest that the XPC protein plays an important role in the cisplatin treatment-mediated cellular response. It may also suggest a possible mechanism of cancer cell drug resistance.


Cell Research | 2004

Peptide nucleic acid (PNA) binding-mediated gene regulation.

Gan Wang; Xiaoxin S Xu

ABSTRACTPeptide nucleic acids (PNAs) are synthetic oligonucleotides with chemically modified backbones. PNAs can bind to both DNA and RNA targets in a sequence-specific manner to form PNA/DNA and PNA/RNA duplex structures. When bound to double-stranded DNA (dsDNA) targets, the PNA molecule replaces one DNA strand in the duplex by strand invasion to form a PNA/DNA/PNA [or (PNA)2/DNA] triplex structure and the displaced DNA strand exists as a single-stranded D-loop. PNA has been used in many studies as research tools for gene regulation and gene targeting. The D-loops generated from the PNA binding have also been demonstrated for its potential in initiating transcription and inducing gene expression. PNA provides a powerful tool to study the mechanism of transcription and an innovative strategy to regulate target gene expression. An understanding of the PNA-mediated gene regulation will have important clinical implications in treatment of many human diseases including genetic, cancerous, and age-related diseases.


Gene | 2000

Activation of human γ-globin gene expression via triplex-forming oligonucleotide (TFO)-directed mutations in the γ-globin gene 5′ flanking region

Xiaoxin S. Xu; Peter M. Glazer; Gan Wang

Abstract Human β-globin disorders, such as sickle cell anemia and β-thalassemia, are relatively common genetic diseases cause by mutations in the β-globin gene. Increasing γ-globin gene expression has been found to greatly reduce the disease symptom. However, the γ-globin gene is developmentally regulated and normally expressed at high levels only during the fetal stage of human development. We have explored the possibility of activating the γ-globin gene expression by triplex-forming oligonucleotide (TFO)-directed targeted mutagenesis. Using a psoralen-conjugated TFO designed to bind to a site overlapping with an Oct-1 binding site at the −280 region of the γ-globin gene, targeted mutagenesis of the Oct-1 binding site has been achieved by transfecting the in-vitro-formed plasmid-oligo complex into human normal fibroblast (NF) cells. The mutation frequency at the target site was estimated to be 20% by direct DNA sequencing analysis. In-vitro protein binding assays indicated that these mutations reduced Oct-1 binding to the target site. In-vivo gene expression assays demonstrated activation of γ-globin gene expression from these mutations in mouse erythroleukemia (MEL) cells. The levels of the γ-globin gene expression increased by as much as fourfold in mutants with single base changes. These results suggest that the −280 region of the Aγ-globin gene negatively regulates the γ-globin gene expression, and mutations at the Oct-1 binding site can lead to activation of the γ-globin gene and generate the hereditary persistence of fetal hemoglobin (HPFH) condition. This study may provide a novel approach for gene therapy of sickle cell disease. The data may also have implications in gene therapy for other diseases including genetic diseases and cancers by introducing mutations into transcription factor binding sites to alter the levels of target gene expression.


Journal of Hematology & Oncology | 2009

Induction of endogenous γ-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence

Xiaoxin S Xu; Xin Hong; Gan Wang

Human β-globin disorders are relatively common genetic diseases cause by mutations in the β-globin gene. Increasing the expression of the γ-globin gene has great benefits in reducing complications associated with these diseases. The Oct-1 transcription factor is involved in the transcriptional regulation of the γ-globin gene. The human γ-globin genes (both Aγ and Gγ-globin genes) carry three Oct-1 transcription factor consensus sequences within their promoter regions. We have studied the possibility of inducing γ-globin gene expression using decoy oligonucleotides that target the Oct-1 transcription factor consensus sequence. A double-stranded 22 bp decoy oligonucleotide containing the Oct-1 consensus sequence was synthesized. The results obtained from our in vitro binding assay revealed a strong competitive binding of the decoy oligonucleotide for the Oct-1 transcription factor. When K562 human erythroleukemia cells were treated with the Oct-1 decoy oligonucleotide, significant increases in the level of the γ-globin mRNA were observed. The results of our western blots further demonstrated significant increases of the fetal hemoglobin (HbF, α2γ2) in the Oct-1 decoy oligonucleotide-treated K562 cells. The results of our immunoprecipitation (IP) studies revealed that the treatment of K562 cells with the Oct-1 decoy oligonucleotide significantly reduced the level of the endogenous γ-globin gene promoter region DNA co-precipitated with the Oct-1 transcription factor. These results suggest that the decoy oligonucleotide designed for the Oct-1 transcription factor consensus sequence could induce expression of the endogenous γ-globin gene through competitive binding of the Oct-1 transcription factor, resulting in activation of the γ-globin genes. Therefore, disrupting the bindings of the Oct-1 transcriptional factors with the decoy oligonucleotide provides a novel approach for inducing expression of the γ-globin genes. It also provides an innovative strategy for the treatment of many disease conditions, including sickle cell anemia and β-thalassemia.

Collaboration


Dive into the Gan Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoxin Xu

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire M. Berg

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Le Wang

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Michael M. Seidman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhiwen Chen

Third Military Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge