Ganapathy Saravanan
Bharathiar University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ganapathy Saravanan.
Chemico-Biological Interactions | 2011
Ganapathy Saravanan; Ponnusamy Ponmurugan
Increased oxidative stress and impaired antioxidant defense mechanism are important factors in the pathogenesis and progression of diabetes mellitus and other oxidant-related diseases. The present study was undertaken to evaluate the possible protective effects of S-allyl cysteine (SAC) against oxidative stress in streptozotocin (STZ) induced diabetic rats. SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, thiobarbituric acid reactive substances (TBARS), hydroperoxide, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were studied. The levels of glucose, TBARS, hydroperoxide, and GSSG were increased significantly whereas the levels of plasma insulin, reduced glutathione, GSH/GSSG ratio, superoxide dismutase, catalase and GPx were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and GSSG. In addition, the levels of plasma insulin, superoxide dismutase, catalase, GPx and reduced glutathione (GSH) were increased in SAC treated diabetic rats. The above findings were supported by histological observations of the liver and kidney. The antioxidant effect of SAC was compared with glyclazide, a well-known antioxidant and antihyperglycemic drug. The present study indicates that the SAC possesses a significant favorable effect on antioxidant defense system in addition to its antidiabetic effect.
Journal of the Science of Food and Agriculture | 2014
Ganapathy Saravanan; Ponnusamy Ponmurugan; Machampalayam Arumugam Deepa; Balasubramanian Senthilkumar
BACKGROUND Obesity represents a rapidly growing threat to the health of populations and diet intervention has been proposed as one of the strategies for weight loss. Ginger and its constituents have been used for their anti-flatulent, expectorant and appetising properties and they are reported to possess gastro-protective and cholesterol-lowering properties. The present study investigated the effects of gingerol on the changes in body weight, serum glucose, insulin, insulin resistance and lipid profile in plasma and liver as well as on the activity of amylase, lipase and leptin in high-fat diet (HFD)-induced obese rats. RESULTS HFD-induced obese rats were treated orally with gingerol (25, 50 and 75 mg kg(-1) ) once daily for 30 days. A lorcaserin-treated group (10 mg kg(-1) ) was included for comparison. The levels of body weight, glucose, lipid profile and insulin, insulin resistance, leptin, amylase and lipase were increased significantly (P < 0.05) in HFD rats. Rats treated with gingerol and fed a HFD showed significantly (P < 0.05) decreased glucose level, body weight, leptin, insulin, amylase, lipase plasma and tissue lipids when compared to normal control. The effect at a dose of 75 mg kg(-1) of gingerol was more pronounced than that of the dose 25 mg kg(-1) and 50 mg kg(-1) . The lorcaserin-treated group also manifested similar effects to those of gingerol. CONCLUSION These findings suggested that ginger supplementation suppresses obesity induced by a high fat diet and it might be a promising adjuvant therapy for the treatment of obesity and its complications.
Experimental and Toxicologic Pathology | 2012
Ganapathy Saravanan; Ponnusamy Ponmurugan
Hyperlipidemia is an associated complication of diabetes mellitus. The association of hyperglycemia with an alteration of lipid parameters presents a major risk for cardiovascular complications in diabetes. The present study was designed to examine the antihyperlipidemic effect of S-allylcysteine (SAC) in STZ induced diabetic rats. The levels of blood glucose, cholesterol (TC), triglycerides (TG), free fatty acids, phospholipids and fatty acid composition were estimated in the liver and kidneys of control and experimental groups of rats. Oral administration of SAC at a dose of 150 mg/kg bodyweight per day to STZ-induced diabetic rats for a period of 45 days resulted in a significant reduction in fasting blood glucose, TC, TG, free fatty acids, phospholipids, LDL-C, VLDL-C and elevation of HDL-C in comparison with diabetic control group. Oral administration of SAC to diabetic rats also decreased the concentrations of fatty acids, viz., palmitic, stearic (16:1), and oleic acid (18:1), whereas linolenic (18:3) and arachidonic acid (20:4) were elevated. The antihyperlipidemic effect of SAC was compared with glyclazide; a well-known antihyperglycemic drug. The result of the present study indicates that SAC showed an antihyperlipidemic effect in addition to its antidiabetic effect in experimental diabetes.
Journal of Diabetes and Its Complications | 2012
Ganapathy Saravanan; Ponnusamy Ponmurugan
OBJECTIVE It is considered that diabetes mellitus and thyroid disease are the two common endocrine disorders and also suggested that insulin and thyroid hormones influence each other actions. The present study was designed to investigate the effect of the administration of S-allylcysteine (SAC), a sulfur containing amino acid derived from garlic on blood glucose, insulin, HbA1C, total protein, albumin, Thyroid hormone (T3, T4), TSH, TBARS and circulatory antioxidant levels (SOD, CAT, GSH and GPx) in STZ-induced diabetic rats. METHODS SAC was administered orally for 45 days to control and STZ induced diabetic rats. The effects of SAC on glucose, plasma insulin, HbA1C, total protein, albumin, Thyroid hormone, TSH and circulatory antioxidant levels were studied. RESULTS The levels of glucose, TBARS, hydroperoxide and HbA1C were increased significantly whereas the levels of plasma insulin, reduced glutathione, superoxide dismutase, catalase, GSH, GPx, total protein, albumin, Thyroid hormone and TSH were decreased in STZ induced diabetic rats. Administration of SAC to diabetic rats showed a decrease in plasma glucose, TBARS, hydroperoxide and HbA1C. In addition, the levels of plasma insulin, SOD, CAT, GPx, GSH, total protein, albumin, Thyroid hormone and TSH were increased in SAC treated diabetic rats. The effect of SAC was compared with gliclazide, a well-known antioxidant and antihyperglycemic drug. CONCLUSION From these findings, it is indicated that SAC might be acting through activation in the synthesis and/or secretion of circulating thyroid hormones which in turn stimulate the synthesis of insulin.
Molecular and Cellular Endocrinology | 2016
Parim Brahma Naidu; V. V. Sathibabu Uddandrao; Ramavat Ravindar Naik; Pothani Suresh; Balaji Meriga; Mustapha Shabana Begum; Rajesh Pandiyan; Ganapathy Saravanan
Obesity, generally linked to hyperlipidemia, has been occurring of late with distressing alarm and has now become a global phenomenon casting a huge economic burden on the health care system of countries around the world. The present study investigated the effects of gingerol over 30 days on the changes in HFD-induced obese rats in marker enzymes of lipid metabolism such as fatty-acid synthase (FAS), Acetyl CoA Carboxylase (ACC), Carnitine Palmitoyl Transferase-1(CPT-1), HMG co-A Reductase (HMGR), Lecithin Choline Acyl Transferase (LCAT) and Lipoprotein Lipase (LPL) and inflammatory markers (TNF-α and IL-6). The rats were treated orally with gingerol (75 mg kg(-1)) once daily for 30 days with a lorcaserin-treated group (10 mg kg(-1)) included for comparison. Changes in body weight, glucose, insulin resistance and expressions of lipid marker enzymes and inflammatory markers in tissues were observed in experimental rats. The administration of gingerol resulted in a significant reduction in body weight gain, glucose and insulin levels, and insulin resistance, which altered the activity, expressions of lipid marker enzymes and inflammatory markers. It showed that gingerol had significantly altered these parameters when compared with HFD control rats. This study confirms that gingerol prevents HFD-induced hyperlipidemia by modulating the expression of enzymes important to cholesterol metabolism.
international journal of endocrinology and metabolism | 2013
Ganapathy Saravanan; Ponnusamy Ponmurugan
Background: S-allylcysteine, a garlic derivative, could have a protective effect against pathogenesis of diabetes mellitus. Objectives: Sustained free radical generation and oxidative damage to system leads to the final conclusion phase of diabetes and also it coexists with a constant diminution in the antioxidant status.The present study aims to evaluate the therapeutic effects of S-allylcysteine (SAC) against adipocytes hormones and antioxidant defense systems of plasma and erythrocytes of treptozotocin (STZ) induced diabetes in rats. Materials and Methods: Diabetic rats were administered SAC (150 mg/kg b.w) orally for 45 days. At 46th day, the rats were anesthetized, and blood and liver sample were collected for analyzing glucose, plasma insulin, CYP2E1 activity, Thiobarbituric acid reactive substances (TBARS), hydroperoxide, enzymatic and nonenzymatic antioxidants, reduced glutathione (GSH), ceruloplasmin, plasma leptin, and adiponectin. Results; The levels of glucose, CYP2E1 activity, Thiobarbituric acid reactive substances (TBARS), hydroperoxide, and ceruloplasmin were increased significantly; whereas, the levels of plasma insulin, reduced glutathione, enzymatic and nonenzymatic antioxidants, leptin and adiponectin were decreased in experimental diabetic rats. Administration of SAC to diabetic rats led to a decrease in the levels of glucose, CYP2E1 activity, TBARS, and ceruloplasmin. In addition, the levels of plasma insulin, enzymatic and nonenzymatic antioxidants leptin and adiponectin were increased in SAC treated diabetic rats. Gliclazide, a standard drug for diabetes, was used for the comparative purpose. Conclusions: The results of the present investigation suggest that SAC could be used as a food supplement in the treatment of diabetes characterized by provoked antioxidant status, altered blood glucose, and hormones level.
Journal of the Science of Food and Agriculture | 2015
Parim Brahma Naidu; Ponnusamy Ponmurugan; Mustapha Sabana Begum; Karthick Mohan; Balaji Meriga; Ramavat Ravindarnaik; Ganapathy Saravanan
BACKGROUND Diabetes is often connected with significant morbidity, mortality and also has a pivotal role in the development of cardiovascular diseases. Diet intervention, particularly naturaceutical antioxidants have anti-diabetic potential and avert oxidative damage linked with diabetic pathogenesis. The present study investigated the effects of diosgenin, a saponin from fenugreek, on the changes in lipid profile in plasma, liver, heart and brain in high-fat diet-streptozotocin (HFD-STZ)-induced diabetic rats. Diosgenin was administered to HFD-STZ induced diabetic rats by orally at 60 mg kg(-1) body weight for 30 days to assess its effects on body weight gain, glucose, insulin, insulin resistance and cholesterol, triglycerides, free fatty acids and phospholipids in plasma, liver, heart and brain. RESULTS The levels of body weight, glucose, insulin, insulin resistance, cholesterol, triglycerides, free fatty acids, phospholipids, VLDL-C and LDL-C were increased significantly (P < 0.05) whereas HDL-C level decreased in the HFD/STZ diabetic rats. Administration of diosgenin to HFD-STZ diabetic rats caused a decrease in body weight gain, blood glucose, insulin, insulin resistance and also it modulated lipid profile in plasma and tissues. CONCLUSION The traditional plant fenugreek and its constituents mediate its anti-diabetic potential through mitigating hyperglycaemic status, altering insulin resistance by alleviating metabolic dysregulation of lipid profile in both plasma and tissues.
Canadian Journal of Diabetes | 2014
Ganapathy Saravanan; Ponnusamy Ponmurugan; M.A. Deepa; B. Senthilkumar
OBJECTIVE Fenugreek and its active compound diosgenin are ancient herbal medicines recommended by the World Health Organization. In this study, the effect of diosgenin on changes in carbohydrate metabolic enzymes and glycogen content in muscle and kidneys of streptozotocin-induced diabetes rats were evaluated. METHODS Diabetes was induced in male albino Wistar rats by intraperitoneal administration of streptozotocin. The diosgenin at different doses (15, 30 and 60 mg/kg body weight) was administered orally to normal and streptozotocin-diabetic rats for 45 days. RESULTS Streptozotocin intoxication led to a significant increase (p<0.05) in blood glucose and a decrease in insulin levels. The carbohydrate metabolic enzymes and glycogen content were also altered. The daily oral administration of diosgenin at different doses (15, 30 and 60 mg/kg body weight) to diabetic rats for 45 days resulted a significant (p<0.05) decline in blood glucose level and a significant increase in plasma insulin level. The altered activities of carbohydrate metabolic key enzymes in muscle and kidneys of diabetic rats were significantly (p<0.05) reverted to near normal level by the administration of diosgenin. The obtained results were compared with glibenclamide, a standard oral hypoglycemia drug. CONCLUSIONS The modulatory effects of diosgenin on attenuating the activities of carbohydrate metabolic enzymes afford a promise for persistent use for the treatment of diabetes in the future, even though clinical studies to evaluate this possibility may be warranted.
Plant Foods for Human Nutrition | 2010
Ganapathy Saravanan; Ponnusamy Ponmurugan
The aim of the present study was to evaluate the possible protective effects of S-allyl cysteine (SAC) on the antioxidant defense system of pancreas in streptozotocin(STZ) induced diabetes in rats. The levels of blood glucose and TBARS in plasma and pancreas were estimated in control and experimental groups of rats. To assess the changes in the cellular antioxidant defense system, the level of reduced glutathione in plasma and pancreas and activities of superoxide dismutase and catalase were assayed in pancreatic tissue homogenate. The levels of glucose, TBARS and enzymatic antioxidants were altered in diabetic rats. These alterations were reverted back to near control levels after the treatment of SAC. The antidiabetic and antioxidant effect of SAC was compared with glyclazide, a well-known hypoglycemic drug. These findings suggest that SAC treatment exerts a therapeutic protective nature in diabetes by decreasing oxidative stress.
Canadian Journal of Diabetes | 2016
Parim Brahma Naidu; V. V. Sathibabu Uddandrao; Ramavat Ravindar Naik; Suresh Pothani; Praveen Kumar Munipally; Balaji Meriga; Mustapha Sabana Begum; Chandrasekar Varatharaju; Rajesh Pandiyan; Ganapathy Saravanan
OBJECTIVES We evaluated the effects of S-allylcysteine (SAC) on biomarkers of the polyol pathway in streptozotocin-nicotinamide (STZ-NA)-induced diabetes in rats. METHODS Diabetes was induced in male albino Wistar rats by intraperitoneal administration of STZ (55 mg kg-1 bw-1) and NA (110 mg kg-1 bw-1). SAC (150 mg kg-1 bw-1) was orally administered to the rats with diabetes for 45 days to assess its effects on blood glucose, insulin, insulin resistance, glycated hemoglobin, aldose reductase (AR), sorbitol dehydrogenase (SDH), sorbitol, fructose, thiobarbituric acid-reactive substances (TBARS), hydroperoxide, hemoglobin and glutathione (GSH). RESULTS On SAC administration in the rats with diabetes, the levels of blood glucose, insulin resistance, glycated hemoglobin, AR, SDH, sorbitol, fructose, TBARS and hydroperoxide increased significantly (p<0.05), whereas those of insulin, hemoglobin and GSH decreased. SAC showed therapeutic effects similar to those of gliclazide in decreasing blood glucose, AR, SDH, sorbitol, fructose, glycosylated hemoglobin, TBARS and hydroperoxides levels and significant increases in insulin, hemoglobin and GSH activity in rats with diabetes. Moreover, histopathologic studies also revealed the protective effect of SAC on pancreatic beta cells. CONCLUSIONS The results indicate that SAC prevents complications of diabetes by reducing the influx of glucose in the polyol pathway, thereby elevating the GSH level and reducing the activities of AR and SDH. Therefore, SAC may have imperative implications for the deterrence and early treatment of type 2 diabetes.