Ganesh Chauhan
Indian Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ganesh Chauhan.
Diabetes | 2010
Ganesh Chauhan; Charles J. Spurgeon; Rubina Tabassum; Seema Bhaskar; Smita R. Kulkarni; Anubha Mahajan; Sreenivas Chavali; M.V. Kranthi Kumar; Swami Prakash; Om Prakash Dwivedi; Saurabh Ghosh; Chittaranjan S. Yajnik; Nikhil Tandon; Dwaipayan Bharadwaj; Giriraj R. Chandak
OBJECTIVE Common variants in PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 genes have been shown to be associated with type 2 diabetes in European populations by genome-wide association studies. We have studied the association of common variants in these eight genes with type 2 diabetes and related traits in Indians by combining the data from two independent case–control studies. RESEARCH DESIGN AND METHODS We genotyped eight single nucleotide polymorphisms (PPARG-rs1801282, KCNJ11-rs5219, TCF7L2-rs7903146, SLC30A8-rs13266634, HHEX-rs1111875, CDKN2A-rs10811661, IGF2BP2-rs4402960, and CDKAL1-rs10946398) in 5,164 unrelated Indians of Indo-European ethnicity, including 2,486 type 2 diabetic patients and 2,678 ethnically matched control subjects. RESULTS We confirmed the association of all eight loci with type 2 diabetes with odds ratio (OR) ranging from 1.18 to 1.89 (P = 1.6 × 10−3 to 4.6 × 10−34). The strongest association with the highest effect size was observed for TCF7L2 (OR 1.89 [95% CI 1.71–2.09], P = 4.6 × 10−34). We also found significant association of PPARG and TCF7L2 with homeostasis model assessment of β-cell function (P = 6.9 × 10−8 and 3 × 10−4, respectively), which looked consistent with recessive and under-dominant models, respectively. CONCLUSIONS Our study replicates the association of well-established common variants with type 2 diabetes in Indians and shows larger effect size for most of them than those reported in Europeans.
Diabetes | 2013
Rubina Tabassum; Ganesh Chauhan; Om Prakash Dwivedi; Anubha Mahajan; Alok Jaiswal; Ismeet Kaur; Khushdeep Bandesh; Tejbir Singh; Benan John Mathai; Yogesh Pandey; Manickam Chidambaram; Amitabh Sharma; Sreenivas Chavali; Shantanu Sengupta; Lakshmi Ramakrishnan; Pradeep Venkatesh; Sanjay Kumar Aggarwal; Saurabh Ghosh; Dorairaj Prabhakaran; Reddy K. Srinath; Madhukar Saxena; Monisha Banerjee; Sandeep Mathur; Anil Bhansali; Viral N. Shah; Sri Venkata Madhu; Raman K. Marwaha; Analabha Basu; Vinod Scaria; Mark I. McCarthy
Indians undergoing socioeconomic and lifestyle transitions will be maximally affected by epidemic of type 2 diabetes (T2D). We conducted a two-stage genome-wide association study of T2D in 12,535 Indians, a less explored but high-risk group. We identified a new type 2 diabetes–associated locus at 2q21, with the lead signal being rs6723108 (odds ratio 1.31; P = 3.32 × 10−9). Imputation analysis refined the signal to rs998451 (odds ratio 1.56; P = 6.3 × 10−12) within TMEM163 that encodes a probable vesicular transporter in nerve terminals. TMEM163 variants also showed association with decreased fasting plasma insulin and homeostatic model assessment of insulin resistance, indicating a plausible effect through impaired insulin secretion. The 2q21 region also harbors RAB3GAP1 and ACMSD; those are involved in neurologic disorders. Forty-nine of 56 previously reported signals showed consistency in direction with similar effect sizes in Indians and previous studies, and 25 of them were also associated (P < 0.05). Known loci and the newly identified 2q21 locus altogether explained 7.65% variance in the risk of T2D in Indians. Our study suggests that common susceptibility variants for T2D are largely the same across populations, but also reveals a population-specific locus and provides further insights into genetic architecture and etiology of T2D.
Journal of Human Genetics | 2011
Ganesh Chauhan; Rubina Tabassum; Anubha Mahajan; Om Prakash Dwivedi; Yuvaraj Mahendran; Ismeet Kaur; Shubhanchi Nigam; Himanshu Dubey; Binuja Varma; Sri Venkata Madhu; Sandeep Mathur; Saurabh Ghosh; Nikhil Tandon; Dwaipayan Bharadwaj
Common variants of fat mass and obesity-associated gene (FTO, fat mass- and obesity-associated gene) have been shown to be associated with obesity and type 2 diabetes in population of European and non-European ethnicity. However, studies in Indian population have provided inconsistent results. Here, we examined association of eight FTO variants (rs1421085, rs8050136, rs9939609, rs9930506, rs1861867, rs9926180, rs2540769 and rs708277) with obesity and type 2 diabetes in 5364 North Indians (2474 type 2 diabetes patients and 2890 non-diabetic controls) in two stages. None of the variants including previously reported intron 1 variants (rs1421085, rs8050136, rs9939609 and rs9930506) showed body mass index (BMI)-dependent/independent association with type 2 diabetes. However, rs1421085, rs8050136 and rs9939609 were associated with obesity status and measures of obesity (BMI, waist circumference and waist-to-hip ratio) in stage 2 and combined study population. Meta-analysis of the two study population results also revealed that rs1421085, rs8050136 and rs9939609 were significantly associated with BMI both under the random- and fixed-effect models (P (random/fixed)=0.02/0.0001, 0.004/0.0006 and 0.01/0.01, respectively). In conclusion, common variants of FTO were associated with obesity, but not with type 2 diabetes in North Indian population.
Neurology | 2016
Rainer Malik; Matthew Traylor; Sara L. Pulit; Steve Bevan; Jemma C. Hopewell; Elizabeth G. Holliday; Wei Zhao; Patrícia Abrantes; Philippe Amouyel; John Attia; Thomas W Battey; Klaus Berger; Giorgio B. Boncoraglio; Ganesh Chauhan; Yu Ching Cheng; Wei-Min Chen; Robert Clarke; Ioana Cotlarciuc; Stéphanie Debette; Guido J. Falcone; José M. Ferro; Dale Gamble; Andreea Ilinca; Steven J. Kittner; Christina Kourkoulis; Robin Lemmens; Christopher Levi; Peter Lichtner; Arne Lindgren; Jingmin Liu
Objective: To investigate the influence of common and low-frequency genetic variants on the risk of ischemic stroke (all IS) and etiologic stroke subtypes. Methods: We meta-analyzed 12 individual genome-wide association studies comprising 10,307 cases and 19,326 controls imputed to the 1000 Genomes (1 KG) phase I reference panel. We selected variants showing the highest degree of association (p < 1E-5) in the discovery phase for replication in Caucasian (13,435 cases and 29,269 controls) and South Asian (2,385 cases and 5,193 controls) samples followed by a transethnic meta-analysis. We further investigated the p value distribution for different bins of allele frequencies for all IS and stroke subtypes. Results: We showed genome-wide significance for 4 loci: ABO for all IS, HDAC9 for large vessel disease (LVD), and both PITX2 and ZFHX3 for cardioembolic stroke (CE). We further refined the association peaks for ABO and PITX2. Analyzing different allele frequency bins, we showed significant enrichment in low-frequency variants (allele frequency <5%) for both LVD and small vessel disease, and an enrichment of higher frequency variants (allele frequency 10% and 30%) for CE (all p < 1E-5). Conclusions: Our findings suggest that the missing heritability in IS subtypes can in part be attributed to low-frequency and rare variants. Larger sample sizes are needed to identify the variants associated with all IS and stroke subtypes.
Diabetes | 2012
Rubina Tabassum; Yuvaraj Mahendran; Om Prakash Dwivedi; Ganesh Chauhan; Saurabh Ghosh; Raman K. Marwaha; Nikhil Tandon; Dwaipayan Bharadwaj
The increasing prevalence of obesity in urban Indian children is indicative of an impending crisis of metabolic disorders. Although perturbations in the secretion of adipokines and inflammatory molecules in childhood obesity are well documented, the contribution of common variants of genes encoding them is not well investigated. We assessed the association of 125 common variants from 21 genes, encoding adipocytokines and inflammatory markers in 1,325 urban Indian children (862 normal weight [NW group] and 463 overweight/obese [OW/OB group]) and replicated top loci in 1,843 Indian children (1,399 NW children and 444 OW/OB children). Variants of four genes (PBEF1 [rs3801266] [P = 4.5 × 10−4], IL6 [rs2069845] [P = 8.7 × 10−4], LEPR [rs1137100] [P = 1.8 × 10−3], and IL6R [rs7514452] [P = 2.1 × 10−3]) were top signals in the discovery sample. Associations of rs2069845, rs1137100, and rs3801266 were replicated (P = 7.9 × 10−4, 8.3 × 10−3, and 0.036, respectively) and corroborated in meta-analysis (P = 2.3 × 10−6, 3.9 × 10−5, and 4.3 × 10−4, respectively) that remained significant after multiple testing corrections. These variants also were associated with quantitative measures of adiposity (weight, BMI, and waist and hip circumferences). Allele dosage analysis of rs2069845, rs1137100, and rs3801266 revealed that children with five to six risk alleles had an approximately four times increased risk of obesity than children with less than two risk alleles (P = 1.2 × 10−7). In conclusion, our results demonstrate the association of the common variants of IL6, LEPR, and PBEF1 with obesity in Indian children.
Journal of Human Genetics | 2011
Sreenivas Chavali; Anubha Mahajan; Rubina Tabassum; Om Prakash Dwivedi; Ganesh Chauhan; Saurabh Ghosh; Nikhil Tandon; Dwaipayan Bharadwaj
Variants in genes involved in pancreatic β-cell development and function are known to cause monogenic forms of type 2 diabetes and are also associated with complex form. In this study, we studied the genetic association of polymorphisms in such important genes with type 2 diabetes in the high-risk Indians. We genotyped 91 polymorphisms in 19 genes (ABCC8, HNF1A, HNF1B, HNF4A, INS, INSM1, ISL1, KCNJ11, MAFA, MNX1, NEUROD1, NEUROG3, NKX2.2, NKX6.1, PAX4, PAX6, PDX1, USF1 and WFS1) in 2025 unrelated North Indians of Indo-European ethnicity comprising of 1019 diabetic and 1006 non-diabetic subjects. HNF4A promoter P2 polymorphisms rs1884613 and rs2144908, which are in high linkage disequilibrium, showed significant association with type 2 diabetes (odds ratio (OR)=1.37 (95% confidence interval (CI) 1.19–1.57), P=9.4 × 10−6 for rs1884613 and OR=1.37 (95%CI 1.20–1.57), P=6.0 × 10−6 for rs2144908), as previously shown in other populations. We observed body mass index-dependent association of these variants with type 2 diabetes in normal-weight/lean subjects. Variants in USF1, ABCC8, ISL1 and KCNJ11 showed nominal association, while haplotypes in these genes were significantly associated. rs3812704 upstream of NEUROG3 significantly increased risk for type 2 diabetes in normal-weight/lean subjects (OR=1.68 (95%CI 1.25–2.24), P=4.9 × 10−4). Thus, pancreatic β-cell development and function genes contribute to susceptibility to type 2 diabetes in North Indians.
Human Mutation | 2012
Ashok Patowary; Ramya Purkanti; Meghna Singh; Rajendra Kumar Chauhan; Deeksha Bhartiya; Om Prakash Dwivedi; Ganesh Chauhan; Dwaipayan Bharadwaj; Sridhar Sivasubbu; Vinod Scaria
Whole genome sequencing of personal genomes has revealed a large repertoire of genomic variations and has provided a rich template for identification of common and rare variants in genomes in addition to understanding the genetic basis of diseases. The widespread application of personal genome sequencing in clinical settings for predictive and preventive medicine has been limited due to the lack of comprehensive computational analysis pipelines. We have used next‐generation sequencing technology to sequence the whole genome of a self‐declared healthy male of Indian origin. We have generated around 28X of the reference human genome with over 99% coverage. Analysis revealed over 3 million single nucleotide variations and about 490,000 small insertion–deletion events including several novel variants. Using this dataset as a template, we designed a comprehensive computational analysis pipeline for the systematic analysis and annotation of functionally relevant variants in the genome. This study follows a systematic and intuitive data analysis workflow to annotate genome variations and its potential functional effects. Moreover, we integrate predictive analysis of pharmacogenomic traits with emphasis on drugs for which pharmacogenomic testing has been recommended. This study thus provides the template for genome‐scale analysis of personal genomes for personalized medicine. Hum Mutat 33:1133–1140, 2012.
Journal of Human Genetics | 2013
Om Prakash Dwivedi; Rubina Tabassum; Ganesh Chauhan; Ismeet Kaur; Saurabh Ghosh; Raman K. Marwaha; Nikhil Tandon; Dwaipayan Bharadwaj
Common variants near melanocortin 4 receptor (MC4R) gene are shown to be associated with adiposity but have varied effects in different age groups. Among Indians, studies have shown association of these variants with obesity in adults, but their association in children is yet to be confirmed. We evaluated association of rs17782313 and rs12970134 near MC4R with adiposity and related traits in Indians including 1362 children and 4077 adults (consisting of 2049 diabetic and 2028 nondiabetic adult subjects). Both variants rs17782313 and rs12970134 showed strong association with adiposity measures (weight, body mass index and waist circumference) in children (P-range 7.6 × 10–5–3.8 × 10–12) and nominal association in nondiabetic adults (P-range 0.05–0.003). Effect sizes on adiposity measures in children (β range 0.22–0.26 Z-score) were ∼3-fold higher compared with adults (β range 0.06–0.08). The minor alleles of both variants showed borderline association (P-range 0.08–0.04) with risk of type 2 diabetes in adults. Meta-analysis of rs12970134 in >12 000 Indian adults corroborated its association with adiposity (P⩽2.2 × 10–9), homeostasis model assessment-estimated insulin resistance (P=4.0 × 10–5) and type 2 diabetes (P=0.003) with only moderate heterogeneity, suggesting similar effect on adult Indians residing in different geographical regions. In conclusion, the study demonstrates association of variants near MC4R with obesity and related traits in Indian children and adults, with higher impact during childhood.
Current Cardiology Reports | 2016
Ganesh Chauhan; Stéphanie Debette
Understanding the genetic risk factors for stroke is an essential step to decipher the underlying mechanisms, facilitate the identification of novel therapeutic targets, and optimize the design of prevention strategies. A very small proportion of strokes are attributable to monogenic conditions, the vast majority being multifactorial, with multiple genetic and environmental risk factors of small effect size. Genome-wide association studies and large international consortia have been instrumental in finding genetic risk factors for stroke. While initial studies identified risk loci for specific stroke subtypes, more recent studies also revealed loci associated with all stroke and all ischemic stroke. Risk loci for ischemic stroke and its subtypes have been implicated in atrial fibrillation (PITX2 and ZFHX3), coronary artery disease (ABO, chr9p21, HDAC9, and ALDH2), blood pressure (ALDH2 and HDAC9), pericyte and smooth muscle cell development (FOXF2), coagulation (HABP2), carotid plaque formation (MMP12), and neuro-inflammation (TSPAN2). For hemorrhagic stroke, two loci (APOE and PMF1) have been identified.
Experimental Diabetes Research | 2012
Ganesh Chauhan; Ismeet Kaur; Rubina Tabassum; Om Prakash Dwivedi; Saurabh Ghosh; Nikhil Tandon; Dwaipayan Bharadwaj
Hyperhomocysteinemia, a risk factor for cardiovascular disorder, obesity, and type 2 diabetes, is prevalent among Indians who are at high risk of these metabolic disorders. We evaluated association of common variants of genes involved in homocysteine metabolism or its levels with type 2 diabetes, obesity, and related traits in North Indians. We genotyped 90 variants in initial phase (2.115 subjects) and replicated top signals in an independent sample set (2.085 subjects). The variant MTHFR-rs1801133 was the top signal for association with type 2 diabetes (OR = 0.78 (95% CI = 0.67–0.92), P = 0.003) and was also associated with 2 h postload plasma glucose (P = 0.04), high-density lipoprotein cholesterol (P = 0.004), and total cholesterol (P = 0.01) in control subjects. These associations were neither replicated nor significant after meta-analysis. Studies involving a larger study population and different ethnic groups are required before ruling out the role of these important candidate genes in type 2 diabetes, obesity, and related traits.