Ganesh Sathe
Smith, Kline & French
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ganesh Sathe.
Cell | 1989
James Arthos; Keith Charles Deen; Margery A. Chaikin; James Allan Fornwald; Ganesh Sathe; Quentin J. Sattentau; Paul R. Clapham; Robin A. Weiss; J. Steven McDougal; Concetta Pietropaolo; Richard Axel; Alemseged Truneh; Paul J. Maddon; Raymond Sweet
The CD4 molecule is a T cell surface glycoprotein that interacts with high affinity with the envelope glycoprotein of the human immunodeficiency virus, HIV, thus serving as a cellular receptor for this virus. To define the sites on CD4 essential for binding to gp120, we produced several truncated, soluble derivatives of CD4 and a series of 26 substitution mutants. Quantitative binding analyses with the truncated proteins demonstrate that the determinants for high affinity binding lie solely with the first 106 amino acids of CD4 (the V1 domain), a region having significant sequence homology to immunoglobulin variable regions. Analysis of the substitution mutants further defines a discrete binding site within this domain that overlaps a region structurally homologous to the second complementarity-determining region of antibody variable domains. Finally, we demonstrate that the inhibition of virus infection and virus-mediated cell fusion by soluble CD4 proteins depends on their association with gp120 at this binding site.
Molecular and Cellular Biology | 1993
Robert Cafferkey; Peter R. Young; Megan M. McLaughlin; Derk J. Bergsma; Y. Koltin; Ganesh Sathe; Leo F. Faucette; Wai-Kwong Eng; Randall K. Johnson; George P. Livi
Rapamycin is a macrolide antifungal agent that exhibits potent immunosuppressive properties. In Saccharomyces cerevisiae, rapamycin sensitivity is mediated by a specific cytoplasmic receptor which is a homolog of human FKBP12 (hFKBP12). Deletion of the gene for yeast FKBP12 (RBP1) results in recessive drug resistance, and expression of hFKBP12 restores rapamycin sensitivity. These data support the idea that FKBP12 and rapamycin form a toxic complex that corrupts the function of other cellular proteins. To identify such proteins, we isolated dominant rapamycin-resistant mutants both in wild-type haploid and diploid cells and in haploid rbp1::URA3 cells engineered to express hFKBP12. Genetic analysis indicated that the dominant mutations are nonallelic to mutations in RBP1 and define two genes, designated DRR1 and DRR2 (for dominant rapamycin resistance). Mutant copies of DRR1 and DRR2 were cloned from genomic YCp50 libraries by their ability to confer drug resistance in wild-type cells. DNA sequence analysis of a mutant drr1 allele revealed a long open reading frame predicting a novel 2470-amino-acid protein with several motifs suggesting an involvement in intracellular signal transduction, including a leucine zipper near the N terminus, two putative DNA-binding sequences, and a domain that exhibits significant sequence similarity to the 110-kDa catalytic subunit of both yeast (VPS34) and bovine phosphatidylinositol 3-kinases. Genomic disruption of DRR1 in a mutant haploid strain restored drug sensitivity and demonstrated that the gene encodes a nonessential function. DNA sequence comparison of seven independent drr1dom alleles identified single base pair substitutions in the same codon within the phosphatidylinositol 3-kinase domain, resulting in a change of Ser-1972 to Arg or Asn. We conclude either that DRR1 (alone or in combination with DRR2) acts as a target of FKBP12-rapamycin complexes or that a missense mutation in DRR1 allows it to compensate for the function of the normal drug target.
Journal of Virology | 2001
Robert T. Sarisky; Matthew R. Quail; Philip E. Clark; Tammy T. Nguyen; Wendy S. Halsey; Robert J. Wittrock; Joan O. Bartus; Marion M. Van Horn; Ganesh Sathe; Stephanie Van Horn; Michael D. Kelly; Teresa H. Bacon; Jeffry J. Leary
ABSTRACT Penciclovir (PCV), an antiherpesvirus agent in the same class as acyclovir (ACV), is phosphorylated in herpes simplex virus (HSV)-infected cells by the viral thymidine kinase (TK). Resistance to ACV has been mapped to mutations within either the TK or the DNA polymerase gene. An identical activation pathway, the similarity in mode of action, and the invariant cross-resistance of TK-negative mutants argue that the mechanisms of resistance to PCV and ACV are likely to be analogous. A total of 48 HSV type 1 (HSV-1) and HSV-2 isolates were selected after passage in the presence of increasing concentrations of PCV or ACV in MRC-5 cells. Phenotypic analysis suggested these isolates were deficient in TK activity. Moreover, sequencing of the TK genes from ACV-selected mutants identified two homopolymeric G-C nucleotide stretches as putative hot spots, thereby confirming previous reports examining Acvr clinical isolates. Surprisingly, mutations identified in PCV-selected mutants were generally not in these regions but distributed throughout the TK gene and at similar frequencies of occurrence within A-T or G-C nucleotides, regardless of virus type. Furthermore, HSV-1 isolates selected in the presence of ACV commonly included frameshift mutations, while PCV-selected HSV-1 mutants contained mostly nonconservative amino acid changes. Data from this panel of laboratory isolates show that Pcvr mutants share cross-resistance and only limited sequence similarity with HSV mutants identified following ACV selection. Subtle differences between PCV and ACV in the interaction with viral TK or polymerase may account for the different spectra of genotypes observed for the two sets of mutants.
Biochemistry | 2009
Edward P. Garvey; Benjamin J. Schwartz; Margaret J. Gartland; Scott Lang; Wendy S. Halsey; Ganesh Sathe; H. Luke Carter; Kurt Weaver
Two-metal binding HIV-1 integrase inhibitors (INIs) are potent inhibitors of HIV-1 in vitro and in patients. We report here for the first time the kinetics of inhibition of integrase-catalyzed strand transfer. First, the IC(50) values for each of six structurally distinct INIs decreased when a preincubation was included: S-1360 (1.3 microM vs 0.12 microM), L-731,988 (130 nM vs 9 nM), L-870,810 (130 nM vs 4 nM), raltegravir (300 nM vs 9 nM), elvitegravir (90 nM vs 6 nM), and GSK364735 (90 nM vs 6 nM). When reactions with these INIs were initiated with integrase, progress curve analyses indicated time-dependent inhibition, which could be fitted to a two-step mechanism of binding. Overall fitted K(i) values matched the IC(50) values measured with a preincubation: S-1360 (0.17 microM), L-731,988 (34 nM), L-870,810 (2.4 nM), raltegravir (10 nM), elvitegravir (4.0 nM), and GSK364735 (2.5 nM). To begin to understand the mechanism for this slow onset of inhibition and its possible impact on drug resistance, studies of resistance mutations were initiated. T66I/M154I exhibited little if any time-dependent inhibition by any of the six INIs, as measured by differences in potency upon preincubation or by progress curve analysis. These data demonstrate that slow binding is a signature of two-metal binding INIs, and that the second slow step is required for full potency. We discuss a possible structural explanation of the second slow step of inhibition and also the relationship between loss of time-dependent inhibition and drug resistance of this important new class of HIV-1 antiretroviral drugs.
Journal of Virology | 2008
Sueli L. Tillieux; Wendy S. Halsey; Elizabeth Thomas; John J. Voycik; Ganesh Sathe; Ventzislav Vassilev
ABSTRACT Varicella-zoster virus (VZV) is a herpesvirus and is the causative agent of chicken pox (varicella) and shingles (herpes zoster). Active immunization against varicella became possible with the development of live attenuated varicella vaccine. The Oka vaccine strain was isolated in Japan from a child who had typical varicella, and it was then attenuated by serial passages in cell culture. Several manufacturers have obtained this attenuated Oka strain and, following additional passages, have developed their own vaccine strains. Notably, the vaccines Varilrix and Varivax are produced by GlaxoSmithKline Biologicals and Merck & Co., Inc., respectively. Both vaccines have been well studied in terms of safety and immunogenicity. In this study, we report the complete nucleotide sequence of the Varilrix (Oka-VGSK) and Varivax (Oka-VMerck) vaccine strain genomes. Their genomes are composed of 124,821 and 124,815 bp, respectively. Full genome annotations covering the features of Oka-derived vaccine genomes have been established for the first time. Sequence analysis indicates 36 nucleotide differences between the two vaccine strains throughout the entire genome, among which only 14 are involved in unique amino acid substitutions. These results demonstrate that, although Oka-VGSK and Oka-VMerck vaccine strains are not identical, they are very similar, which supports the clinical data showing that both vaccines are well tolerated and elicit strong immune responses against varicella.
Gene | 1993
Paul L. Koser; Wai-Kwong Eng; Mary J. Bossard; Megan M. McLaughlin; Robert Cafferkey; Ganesh Sathe; Leo F. Faucette; Mark Alan Levy; Randall K. Johnson; Derk J. Bergsma; George P. Livi
Rapamycin (Rm) is a macrolide antifungal agent related to FK506 that exhibits potent immunosuppressive properties which are mediated through interaction with specific cytoplasmic receptors (FKBPs or RBPs, for FK506- and Rm-binding proteins, respectively). These proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity in vitro which is inhibited by the binding of Rm and FK506. In Saccharomyces cerevisiae, Rm sensitivity (Rms) is mediated by binding of the drug to RBP1, a homolog of the 12-kDa human FK506-binding protein (FKBP12); null mutations in the yeast RBP1 gene result in a recessive drug resistance phenotype. To identify missense mutations that define amino acid (aa) residues in RBP1 involved in drug sensitivity, we selected and genetically characterized over 250 independent RmR rbp1 mutants and screened them for both RBP1-specific mRNA and protein expression. Whereas all rbp1 mutants expressed abundant levels of RBP1 mRNA, stable RBP1 protein production was detected in only one mutant strain. The RBP1 gene was PCR-generated (in triplicate) from several rbp1 mutants and independent clones were sequenced. Most of the immunoblot-negative alleles were found to contain various types of null mutations; however, some alleles contained specific missense mutations that apparently affect protein stability in vivo. The single immunoblot-positive allele was found to contain a mutation altering a specific residue (Tyr89) which is conserved among the known FKBPs, and which, based on the solution and x-ray structures of human FKBP12, has been proposed to be part of a hydrophobic drug-binding pocket for FK506 and Rm.(ABSTRACT TRUNCATED AT 250 WORDS)
Pharmacogenetics and Genomics | 2007
Colin F. Spraggs; Alun McCarthy; Linda C. McCarthy; Guizhu Hong; Arlene R Hughes; Xiwu Lin; Ganesh Sathe; Devi Smart; Christopher Michael Traini; Stephanie Van Horn; Liling Warren; Michael Mosteller
Peroxisome proliferator-activated receptor gamma (PPAR&ggr;) agonists are highly effective in the treatment of type 2 diabetes. In some patients, PPAR&ggr; ligands are associated with fluid retention/oedema, for which the mechanism is not fully understood. A pharmacogenetic study was undertaken to investigate effects of variations in 21 candidate genes related to epithelial sodium channel (ENaC) pathways on oedema. This study used DNA samples collected from type 2 diabetes phase III clinical trials of the PPAR&ggr; agonist farglitazar (administered alone or in combination with insulin or glyburide) and investigated oedema reported as an adverse event as phenotype. Initial case–control analysis of oedema identified candidate gene single nucleotide polymorphisms with significant associations. These included three polymorphisms in ENaC&bgr; subunit (SCNN1B) that showed significant associations (P<0.05) with the two combination treatments in discrete regions of the gene, but not farglitazar treatment alone. Sequencing of SCNN1B in 207 Caucasian participants receiving farglitazar plus insulin or glyburide combination therapies, identified additional polymorphisms that were also significantly associated with oedema (P<0.0005) and maintained the treatment-regional associations. Further covariate analysis accounting for clinical factors influencing oedema supported these observations. One of the SCNN1B polymorphisms, at position −405 of the 5′ flanking region (rs34241435), was predicted to modify transcriptional interactions and in a transfected COS cell luciferase reporter gene assay exhibited higher promoter activity. These exploratory studies provide clinical pharmacogenetic and functional genomic evidence to support a pivotal role for ENaC regulation in PPAR&ggr;-induced oedema and provide insight into mechanisms and possible management of this side effect.
Gene | 1989
Madelyn M. Caltabiano; Monica L.-S. Tsang; James A. Weatherbee; Roger Lucas; Ganesh Sathe; Jeffrey Sutton; G.Douglas Johnson; Derk J. Bergsma
Abstract Transient transfection of simian COS cells with a recombinant plasmid encoding the human transforming growth factor TGF-β2 precursor protein results in the production of a latent, biologically inactive protein. Upon acidification, recombinant TGF-β2 exhibits full biological activity, including inhibition of mink lung epithelial cell growth, stimulation of anchorage-independent growth of murine embryonic fibroblasts, and competition for TGF-β receptor binding. Further analysis of conditioned media with antiserum to either a pro- [amino acid (aa) residues 1–220] or mature [aa 297–414] peptide of the TGF-β2 precursor suggests that TGF-β2, similar to TGF-β1 production in Chinese hamster ovary cells [Gentry et al., Mol. Cell. Biol. 7 (1987) 3418–3427], is initially synthesized as a larger precursor protein which is proteolytically cleaved to yield the mature 112-aa transforming growth factor.
Antimicrobial Agents and Chemotherapy | 2015
Seda Arat; Aaron Spivak; Stephanie Van Horn; Elizabeth A. Thomas; Christopher Michael Traini; Ganesh Sathe; George P. Livi; Karen A. Ingraham; Lori S. Jones; Kelly Aubart; David J. Holmes; Odin J. Naderer; James R. Brown
ABSTRACT GSK1322322 is a novel antibacterial agent under development, and it has known antibacterial activities against multidrug-resistant respiratory and skin pathogens through its inhibition of the bacterial peptide deformylase. Here, we used next-generation sequencing (NGS) of the bacterial 16S rRNA genes from stool samples collected from 61 healthy volunteers at the predosing and end-of-study time points to determine the effects of GSK1322322 on the gastrointestinal (GI) microbiota in a phase I, randomized, double-blind, and placebo-controlled study. GSK1322322 was administered either intravenously (i.v.) only or in an oral-i.v. combination in single- and repeat-dose-escalation infusions. Analysis of the 16S rRNA sequence data found no significant changes in the relative abundances of GI operational taxonomic units (OTUs) between the prestudy and end-of-study samples for either the placebo- or i.v.-only-treated subjects. However, oral-i.v. treatment resulted in significant decreases in some bacterial taxa, the Firmicutes and Bacteroidales, and increases in others, the Betaproteobacteria, Gammaproteobacteria, and Bifidobacteriaceae. Microbiome diversity plots clearly differentiated the end-of-study oral-i.v.-dosed samples from all others collected. The changes in genome function as inferred from species composition suggest an increase in bacterial transporter and xenobiotic metabolism pathways in these samples. A phylogenetic analysis of the peptide deformylase protein sequences collected from the published genomes of clinical isolates previously tested for GSK1322322 in vitro susceptibility and GI bacterial reference genomes suggests that antibiotic target homology is one of several factors that influences the response of GI microbiota to this antibiotic. Our study shows that dosing regimen and target class are important factors when considering the impact of antibiotic usage on GI microbiota. (This clinical trial was registered at the GlaxoSmithKline Clinical Study Register under study identifier PDF 113376.)
Molecular Cancer Therapeutics | 2010
Yan Zhang; Michael J. Italia; Kurt R. Auger; Wendy S. Halsey; Stephanie Van Horn; Ganesh Sathe; Michal Magid-Slav; James R. Brown; Joanna D. Holbrook
With genome-wide cancer studies producing large DNA sequence data sets, novel computational approaches toward better understanding the role of mutations in tumor survival and proliferation are greatly needed. Tumors are widely viewed to be influenced by Darwinian processes, yet molecular evolutionary analysis, invaluable in other DNA sequence studies, has seen little application in cancer biology. Here, we describe the phylogenetic analysis of 353 cancer cell lines based on multiple sequence alignments of 3,252 nucleotides and 1,170 amino acids built from the concatenation of variant codons and residues across 494 and 523 genes, respectively. Reconstructed phylogenetic trees cluster cell lines by shared DNA variant patterns rather than cancer tissue type, suggesting that tumors originating from diverse histologies have similar oncogenic pathways. A well-supported clade of 91 cancer cell lines representing multiple tumor types also had significantly different gene expression profiles from the remaining cell lines according to statistical analyses of mRNA microarray data. This suggests that phylogenetic clustering of tumor cell lines based on DNA variants might reflect functional similarities in cellular pathways. Positive selection analysis revealed specific DNA variants that might be potential driver mutations. Our study shows the potential role of molecular evolutionary analyses in tumor classification and the development of novel anticancer strategies. Mol Cancer Ther; 9(2); 279–91