Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wendy S. Halsey is active.

Publication


Featured researches published by Wendy S. Halsey.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27)

Michael T. McCabe; Alan P. Graves; Gopinath Ganji; Elsie Diaz; Wendy S. Halsey; Yong Jiang; Kimberly N. Smitheman; Heidi M. Ott; Melissa B. Pappalardi; Kimberly E. Allen; Stephanie Chen; Anthony Della Pietra; Edward Dul; Ashley M. Hughes; Seth Gilbert; Sara H. Thrall; Peter J. Tummino; Ryan G. Kruger; Martin Brandt; Benjamin J. Schwartz; Caretha L. Creasy

Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 kcat/Km ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 kcat/Km ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 kcat/Km ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2.


Journal of Translational Medicine | 2011

Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine

Joanna D. Holbrook; Joel S. Parker; Kathleen T. Gallagher; Wendy S. Halsey; Ashley M. Hughes; Victor J. Weigman; Peter F. Lebowitz; Rakesh Kumar

BackgroundGlobally, gastric cancer is the second most common cause of cancer-related death, with the majority of the health burden borne by economically less-developed countries.MethodsHere, we report a genetic characterization of 50 gastric adenocarcinoma samples, using affymetrix SNP arrays and Illumina mRNA expression arrays as well as Illumina sequencing of the coding regions of 384 genes belonging to various pathways known to be altered in other cancers.ResultsGenetic alterations were observed in the WNT, Hedgehog, cell cycle, DNA damage and epithelial-to-mesenchymal-transition pathways.ConclusionsThe data suggests targeted therapies approved or in clinical development for gastric carcinoma would be of benefit to ~22% of the patients studied. In addition, the novel mutations detected here, are likely to influence clinical response and suggest new targets for drug discovery.


Journal of Virology | 2001

Characterization of Herpes Simplex Viruses Selected in Culture for Resistance to Penciclovir or Acyclovir

Robert T. Sarisky; Matthew R. Quail; Philip E. Clark; Tammy T. Nguyen; Wendy S. Halsey; Robert J. Wittrock; Joan O. Bartus; Marion M. Van Horn; Ganesh Sathe; Stephanie Van Horn; Michael D. Kelly; Teresa H. Bacon; Jeffry J. Leary

ABSTRACT Penciclovir (PCV), an antiherpesvirus agent in the same class as acyclovir (ACV), is phosphorylated in herpes simplex virus (HSV)-infected cells by the viral thymidine kinase (TK). Resistance to ACV has been mapped to mutations within either the TK or the DNA polymerase gene. An identical activation pathway, the similarity in mode of action, and the invariant cross-resistance of TK-negative mutants argue that the mechanisms of resistance to PCV and ACV are likely to be analogous. A total of 48 HSV type 1 (HSV-1) and HSV-2 isolates were selected after passage in the presence of increasing concentrations of PCV or ACV in MRC-5 cells. Phenotypic analysis suggested these isolates were deficient in TK activity. Moreover, sequencing of the TK genes from ACV-selected mutants identified two homopolymeric G-C nucleotide stretches as putative hot spots, thereby confirming previous reports examining Acvr clinical isolates. Surprisingly, mutations identified in PCV-selected mutants were generally not in these regions but distributed throughout the TK gene and at similar frequencies of occurrence within A-T or G-C nucleotides, regardless of virus type. Furthermore, HSV-1 isolates selected in the presence of ACV commonly included frameshift mutations, while PCV-selected HSV-1 mutants contained mostly nonconservative amino acid changes. Data from this panel of laboratory isolates show that Pcvr mutants share cross-resistance and only limited sequence similarity with HSV mutants identified following ACV selection. Subtle differences between PCV and ACV in the interaction with viral TK or polymerase may account for the different spectra of genotypes observed for the two sets of mutants.


Molecular Cancer Therapeutics | 2010

Sensitivity of Cancer Cells to Plk1 Inhibitor GSK461364A Is Associated with Loss of p53 Function and Chromosome Instability

Yan Degenhardt; Joel Greshock; Sylvie Laquerre; Aidan G. Gilmartin; Junping Jing; Mark Richter; Xiping Zhang; Maureen R. Bleam; Wendy S. Halsey; Ashley M. Hughes; Christopher Moy; Nancy Liu-Sullivan; Scott Powers; Kurtis E. Bachman; Jeffrey R. Jackson; Barbara L. Weber; Richard Wooster

Polo-like kinases are a family of serine threonine kinases that are critical regulators of cell cycle progression and DNA damage response. Predictive biomarkers for the Plk1-selective inhibitor GSK461364A were identified by comparing the genomics and genetics of a panel of human cancer cell lines with their response to a drug washout followed by an outgrowth assay. In this assay, cell lines that have lost p53 expression or carry mutations in the TP53 gene tended to be more sensitive to GSK461364A. These more sensitive cell lines also had increased levels of chromosome instability, a characteristic associated with loss of p53 function. Further mechanistic studies showed that p53 wild-type (WT) and not mutant cells can activate a postmitotic tetraploidy checkpoint and arrest at pseudo-G1 state after GSK461364A treatment. RNA silencing of WT p53 increased the antiproliferative activity of GSK461364A. Furthermore, silencing of p53 or p21/CDKN1A weakened the tetraploidy checkpoint in cells that survived mitotic arrest and mitotic slippage. As many cancer therapies tend to be more effective in p53 WT patients, the higher sensitivity of p53-deficient tumors toward GSK461364A could potentially offer an opportunity to treat tumors that are refractory to other chemotherapies as well as early line therapy for these genotypes. Mol Cancer Ther; 9(7); 2079–89. ©2010 AACR.


Biochemistry | 2009

Potent inhibitors of HIV-1 integrase display a two-step, slow-binding inhibition mechanism which is absent in a drug-resistant T66I/M154I mutant.

Edward P. Garvey; Benjamin J. Schwartz; Margaret J. Gartland; Scott Lang; Wendy S. Halsey; Ganesh Sathe; H. Luke Carter; Kurt Weaver

Two-metal binding HIV-1 integrase inhibitors (INIs) are potent inhibitors of HIV-1 in vitro and in patients. We report here for the first time the kinetics of inhibition of integrase-catalyzed strand transfer. First, the IC(50) values for each of six structurally distinct INIs decreased when a preincubation was included: S-1360 (1.3 microM vs 0.12 microM), L-731,988 (130 nM vs 9 nM), L-870,810 (130 nM vs 4 nM), raltegravir (300 nM vs 9 nM), elvitegravir (90 nM vs 6 nM), and GSK364735 (90 nM vs 6 nM). When reactions with these INIs were initiated with integrase, progress curve analyses indicated time-dependent inhibition, which could be fitted to a two-step mechanism of binding. Overall fitted K(i) values matched the IC(50) values measured with a preincubation: S-1360 (0.17 microM), L-731,988 (34 nM), L-870,810 (2.4 nM), raltegravir (10 nM), elvitegravir (4.0 nM), and GSK364735 (2.5 nM). To begin to understand the mechanism for this slow onset of inhibition and its possible impact on drug resistance, studies of resistance mutations were initiated. T66I/M154I exhibited little if any time-dependent inhibition by any of the six INIs, as measured by differences in potency upon preincubation or by progress curve analysis. These data demonstrate that slow binding is a signature of two-metal binding INIs, and that the second slow step is required for full potency. We discuss a possible structural explanation of the second slow step of inhibition and also the relationship between loss of time-dependent inhibition and drug resistance of this important new class of HIV-1 antiretroviral drugs.


Journal of Virology | 2008

Complete DNA Sequences of Two Oka Strain Varicella-Zoster Virus Genomes

Sueli L. Tillieux; Wendy S. Halsey; Elizabeth Thomas; John J. Voycik; Ganesh Sathe; Ventzislav Vassilev

ABSTRACT Varicella-zoster virus (VZV) is a herpesvirus and is the causative agent of chicken pox (varicella) and shingles (herpes zoster). Active immunization against varicella became possible with the development of live attenuated varicella vaccine. The Oka vaccine strain was isolated in Japan from a child who had typical varicella, and it was then attenuated by serial passages in cell culture. Several manufacturers have obtained this attenuated Oka strain and, following additional passages, have developed their own vaccine strains. Notably, the vaccines Varilrix and Varivax are produced by GlaxoSmithKline Biologicals and Merck & Co., Inc., respectively. Both vaccines have been well studied in terms of safety and immunogenicity. In this study, we report the complete nucleotide sequence of the Varilrix (Oka-VGSK) and Varivax (Oka-VMerck) vaccine strain genomes. Their genomes are composed of 124,821 and 124,815 bp, respectively. Full genome annotations covering the features of Oka-derived vaccine genomes have been established for the first time. Sequence analysis indicates 36 nucleotide differences between the two vaccine strains throughout the entire genome, among which only 14 are involved in unique amino acid substitutions. These results demonstrate that, although Oka-VGSK and Oka-VMerck vaccine strains are not identical, they are very similar, which supports the clinical data showing that both vaccines are well tolerated and elicit strong immune responses against varicella.


Molecular Cancer Therapeutics | 2014

A687V EZH2 Is a Driver of Histone H3 Lysine 27 (H3K27) Hypertrimethylation

Heidi M. Ott; Alan P. Graves; Melissa B. Pappalardi; Michael Huddleston; Wendy S. Halsey; Ashley M. Hughes; Arthur Groy; Edward Dul; Yong Jiang; Yuchen Bai; Roland S. Annan; Sharad K. Verma; Steven D. Knight; Ryan G. Kruger; Dashyant Dhanak; Benjamin Schwartz; Peter J. Tummino; Caretha L. Creasy; Michael T. McCabe

The EZH2 methyltransferase silences gene expression through methylation of histone H3 on lysine 27 (H3K27). Recently, EZH2 mutations have been reported at Y641, A677, and A687 in non-Hodgkin lymphoma. Although the Y641F/N/S/H/C and A677G mutations exhibit clearly increased activity with substrates dimethylated at lysine 27 (H3K27me2), the A687V mutant has been shown to prefer a monomethylated lysine 27 (H3K27me1) with little gain of activity toward H3K27me2. Herein, we demonstrate that despite this unique substrate preference, A687V EZH2 still drives increased H3K27me3 when transiently expressed in cells. However, unlike the previously described mutants that dramatically deplete global H3K27me2 levels, A687V EZH2 retains normal levels of H3K27me2. Sequencing of B-cell–derived cancer cell lines identified an acute lymphoblastic leukemia cell line harboring this mutation. Similar to exogenous expression of A687V EZH2, this cell line exhibited elevated H3K27me3 while possessing H3K27me2 levels higher than Y641- or A677-mutant lines. Treatment of A687V EZH2-mutant cells with GSK126, a selective EZH2 inhibitor, was associated with a global decrease in H3K27me3, robust gene activation, caspase activation, and decreased proliferation. Structural modeling of the A687V EZH2 active site suggests that the increased catalytic activity with H3K27me1 may be due to a weakened interaction with an active site water molecule that must be displaced for dimethylation to occur. These findings suggest that A687V EZH2 likely increases global H3K27me3 indirectly through increased catalytic activity with H3K27me1 and cells harboring this mutation are highly dependent on EZH2 activity for their survival. Mol Cancer Ther; 13(12); 3062–73. ©2014 AACR.


Vaccine | 2009

Comparative analysis of the complete nucleotide sequences of measles, mumps, and rubella strain genomes contained in Priorix-Tetra™ and ProQuad™ live attenuated combined vaccines

Sueli L. Tillieux; Wendy S. Halsey; Ganesh M. Sathe; Ventzislav Vassilev

Measles, mumps, and rubella are three common viral childhood diseases that can have serious complications. Active immunization against these diseases became possible with the development of live attenuated virus vaccines in the late 1960s. Vaccines against these three diseases were combined into trivalent (Priorix, GlaxoSmithKline Biologicals and M-M-R(II), Merck & Co., Inc.) or tetravalent vaccines including the addition of a live attenuated VZV Oka strain (Priorix-Tetra, GlaxoSmithKline Biologicals and ProQuad, Merck & Co., Inc.). In this study, we report the complete nucleotide sequence of the vaccine strain genomes of the measles (Schwarz and attenuated Edmonston Enders), mumps (RIT 4385 and JL1 component of Jeryl Lynn), and rubella (Wistar RA 27/3) viruses included in the two tetravalent vaccines. Sequencing analysis of the individual virus components in the commercially distributed tetravalent vaccine lots showed that there are no nucleotide differences between the measles, mumps (JL1 component), and rubella vaccine strain genomes of Priorix-Tetra and ProQuad. The observed genetic identity of the individual strains in both vaccines is consistent with their clinical profiles; Priorix-Tetra and ProQuad are both well tolerated and elicit protective immune responses against these three childhood diseases.


JAMA Neurology | 2017

Characterization of Gene Expression Phenotype in Amyotrophic Lateral Sclerosis Monocytes.

Weihua Zhao; David R. Beers; Kristopher G. Hooten; Douglas H. Sieglaff; Aijun Zhang; Shanker Kalyana-Sundaram; Christopher Michael Traini; Wendy S. Halsey; Ashley M. Hughes; Ganesh M. Sathe; George P. Livi; Guo Huang Fan; Stanley H. Appel

Importance Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by selective loss of upper and lower motor neurons. Patients with ALS have persistent peripheral and central inflammatory responses including abnormally functioning T cells and activated microglia. However, much less is known about the inflammatory gene profile of circulating innate immune monocytes in these patients. Objective To characterize the transcriptomics of peripheral monocytes in patients with ALS. Design, Setting, and Participants Monocytes were isolated from peripheral blood of 43 patients with ALS and 22 healthy control individuals. Total RNA was extracted from the monocytes and subjected to deep RNA sequencing, and these results were validated by quantitative reverse transcription polymerase chain reaction. Main Outcomes and Measures The differential expressed gene signatures of these monocytes were identified using unbiased RNA sequencing strategy for gene expression profiling. Results The demographics between the patients with ALS (mean [SD] age, 58.8 [1.57] years; 55.8% were men and 44.2% were women; 90.7% were white, 4.65% were Hispanic, 2.33% were black, and 2.33% were Asian) and control individuals were similar (mean [SD] age, 57.6 [2.15] years; 50.0% were men and 50.0% were women; 90.9% were white, none were Hispanic, none were black, and 9.09% were Asian). RNA sequencing data from negative selected monocytes revealed 233 differential expressed genes in ALS monocytes compared with healthy control monocytes. Notably, ALS monocytes demonstrated a unique inflammation-related gene expression profile, the most prominent of which, including IL1B, IL8, FOSB, CXCL1, and CXCL2, were confirmed by quantitative reverse transcription polymerase chain reaction (IL8, mean [SE], 1.00 [0.18]; P = .002; FOSB, 1.00 [0.21]; P = .009; CXCL1, 1.00 [0.14]; P = .002; and CXCL2, 1.00 [0.11]; P = .01). Amyotrophic lateral sclerosis monocytes from rapidly progressing patients had more proinflammatory DEGs than monocytes from slowly progressing patients. Conclusions and Relevance Our data indicate that ALS monocytes are skewed toward a proinflammatory state in the peripheral circulation and may play a role in ALS disease progression, especially in rapidly progressing patients. This increased inflammatory response of peripheral immune cells may provide a potential target for disease-modifying therapy in patients with ALS.


Molecular Cancer Therapeutics | 2010

Molecular Evolutionary Analysis of Cancer Cell Lines

Yan Zhang; Michael J. Italia; Kurt R. Auger; Wendy S. Halsey; Stephanie Van Horn; Ganesh Sathe; Michal Magid-Slav; James R. Brown; Joanna D. Holbrook

With genome-wide cancer studies producing large DNA sequence data sets, novel computational approaches toward better understanding the role of mutations in tumor survival and proliferation are greatly needed. Tumors are widely viewed to be influenced by Darwinian processes, yet molecular evolutionary analysis, invaluable in other DNA sequence studies, has seen little application in cancer biology. Here, we describe the phylogenetic analysis of 353 cancer cell lines based on multiple sequence alignments of 3,252 nucleotides and 1,170 amino acids built from the concatenation of variant codons and residues across 494 and 523 genes, respectively. Reconstructed phylogenetic trees cluster cell lines by shared DNA variant patterns rather than cancer tissue type, suggesting that tumors originating from diverse histologies have similar oncogenic pathways. A well-supported clade of 91 cancer cell lines representing multiple tumor types also had significantly different gene expression profiles from the remaining cell lines according to statistical analyses of mRNA microarray data. This suggests that phylogenetic clustering of tumor cell lines based on DNA variants might reflect functional similarities in cellular pathways. Positive selection analysis revealed specific DNA variants that might be potential driver mutations. Our study shows the potential role of molecular evolutionary analyses in tumor classification and the development of novel anticancer strategies. Mol Cancer Ther; 9(2); 279–91

Collaboration


Dive into the Wendy S. Halsey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge