Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gang Hua is active.

Publication


Featured researches published by Gang Hua.


Journal of Biological Chemistry | 2004

Bt-R1a Extracellular Cadherin Repeat 12 Mediates Bacillus thuringiensis Cry1Ab Binding and Cytotoxicity

Gang Hua; Juan Luis Jurat-Fuentes; Michael J. Adang

The cadherin protein Bt-R1a is a receptor for Bacillus thuringiensis Cry1A toxins in Manduca sexta. Cry1Ab toxin is reported to bind specific epitopes located in extracellular cadherin repeat (CR) 7 and CR11 on Bt-R1 (Gomez, B., Miranda-Rios, J., Riudino-Pinera, E., Oltean, D. I., Gill, S. S., Bravo, A., and Soberon, M. (2002) J. Biol. Chem. 277, 30137–30143; Dorsch, J. A., Candas, M., Griko, N., Maaty, W., Midboe, E., Vadlamudi, R., and Bulla, L. (2002) Insect Biochem. Mol. Biol. 32, 1025–1036). We transiently expressed CR domains of Bt-R1a in Drosophila melanogaster Schneider 2 (S2) cells as fusion peptides between a signal peptide and a terminal region that included membrane-proximal, membrane-spanning, and cytoplasmic domains. A domain consisting of CR11 and 12 was the minimal 125I-Cry1Ab binding region detected under denaturing conditions. Only CR12 was essential for Cry1Ab binding and cytotoxicity to S2 cells when tested under native conditions. Under these conditions expressed CR12 bound 125I-Cry1Ab with high affinity (Kcom = 2.9 nm). Flow cytometry assays showed that expression of CR12 conferred susceptibility to Cry1Ab in S2 cells. Derivatives of Bt-R1a with separate deletions of CR7, 11, and 12 were expressed in S2 cells. Only deletion of CR12 caused loss of Cry1Ab binding and cytotoxicity. These results demonstrate that CR12 is the essential Cry1Ab binding component on Bt-R1 that mediates Cry1Ab-induced cytotoxicity.


Applied and Environmental Microbiology | 2001

Binding analyses of Bacillus thuringiensis Cry δ-endotoxins using brush border membrane vesicles of Ostrinia nubilalis

Gang Hua; Luke Masson; Juan Luis Jurat-Fuentes; George E. Schwab; Michael J. Adang

ABSTRACT Transgenic corn expressing the Bacillus thuringiensisCry1Ab gene is highly insecticidal to Ostrinia nubilalis(European corn borer) larvae. We ascertained whether Cry1F, Cry9C, or Cry9E recognizes the Cry1Ab binding site on the O. nubilalis brush border by three approaches. An optical biosensor technology based on surface plasmon resonance measured binding of brush border membrane vesicles (BBMV) injected over a surface of immobilized Cry toxin. Preincubation with Cry1Ab reduced BBMV binding to immobilized Cry1Ab, whereas preincubation with Cry1F, Cry9C, or Cry9E did not inhibit BBMV binding. BBMV binding to a Cry1F-coated surface was reduced when vesicles were preincubated in Cry1F or Cry1Ab but not Cry9C or Cry9E. A radioligand approach measured 125I-Cry1Ab toxin binding to BBMV in the presence of homologous (Cry1Ab) and heterologous (Cry1Ac, Cry1F, Cry9C, or Cry9E) toxins. Unlabeled Cry1Ac effectively competed for 125I-Cry1Ab binding in a manner comparable to Cry1Ab itself. Unlabeled Cry9C and Cry9E toxins did not inhibit 125I-Cry1Ab binding to BBMV. Cry1F inhibited125I-Cry1Ab binding at concentrations greater than 500 nM. Cry1F had low-level affinity for the Cry1Ab binding site. Ligand blot analysis identified Cry1Ab, Cry1Ac, and Cry1F binding proteins in BBMV. The major Cry1Ab signals on ligand blots were at 145 kDa and 154 kDa, but a strong signal was present at 220 kDa and a weak signal was present at 167 kDa. Cry1Ac and Cry1F binding proteins were detected at 220 and 154 kDa. Anti-Manduca sexta aminopeptidase serum recognized proteins of 145, 154, and 167 kDa, and anti-cadherin serum recognized the 220 kDa protein. We speculate that isoforms of aminopeptidase and cadherin in the brush border membrane serve as Cry1Ab, Cry1Ac, and Cry1F binding proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin

Jiang Chen; Gang Hua; Juan Luis Jurat-Fuentes; Mohd Amir Fursan Abdullah; Michael J. Adang

The insecticidal crystal proteins produced by Bacillus thuringiensis (Bt) are broadly used to control insect pests with agricultural importance. The cadherin Bt-R1 is a binding protein for Bt Cry1A toxins in midgut epithelia of tobacco hornworm (Manduca sexta). We previously identified the Bt-R1 region most proximal to the cell membrane (CR12-MPED) as the essential binding region required for Cry1Ab-mediated cytotoxicity. Here, we report that a peptide containing this region expressed in Escherichia coli functions as a synergist of Cry1A toxicity against lepidopteran larvae. Far-UV circular dichroism and 1H-NMR spectroscopy confirmed that our purified CR12-MPED peptide mainly consisted of β-strands and random coils with unfolded structure. CR12-MPED peptide bound brush border membrane vesicles with high affinity (Kd = 32 nM) and insect midgut microvilli but did not alter Cry1Ab or Cry1Ac binding localization in the midgut. By BIAcore analysis we demonstrate that Cry1Ab binds CR12-MPED at high (9 nM)- and low (1 μM)-affinity sites. CR12-MPED-mediated Cry1A toxicity enhancement was significantly reduced when the high-affinity Cry1A-binding epitope (1416GVLTLNIQ1423) within the peptide was altered. Because the mixtures of low Bt toxin dose and CR12-MPED peptide effectively control target insect pests, our discovery has important implications related to the use of this peptide to enhance insecticidal activity of Bt toxin-based biopesticides and transgenic Bt crops.


Biochemistry | 2008

Anopheles gambiae cadherin AgCad1 binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCad1 synergizes toxicity.

Gang Hua; Rui Zhang; Mohd Amir Fursan Abdullah; Michael J. Adang

A midgut cadherin AgCad1 cDNA was cloned from Anopheles gambiae larvae and analyzed for its possible role as a receptor for the Cry4Ba toxin of Bacillus thuringiensis strain israelensis. The AgCad1 cadherin encodes a putative 1735-residue protein organized into an extracellular region of 11 cadherin repeats (CR) and a membrane-proximal extracellular domain (MPED). AgCad1 mRNA was detected in midgut of larvae by polymerase chain reaction (PCR). The AgCad1 protein was localized, by immunochemistry of sectioned larvae, predominately to the microvilli in posterior midgut. The localization of Cry4Ba binding was determined by the same technique, and toxin bound microvilli in posterior midgut. The AgCad1 protein was present in brush border membrane fractions prepared from larvae, and Cry4Ba toxin bound the same-sized protein on blots of those fractions. The AgCad1 protein was expressed transiently in Drosophila melanogaster Schneider 2 (S2) cells. 125I-Cry4Ba toxin bound AgCad1 from S2 cells in a competitive manner. Cry4Ba bound to beads extracted 200 kDa AgCad1 and a 29 kDa fragment of AgCad1 from S2 cells. A peptide containing the AgCad1 region proximal to the cell (CR11-MPED) was expressed in Escherichia coli. Although Cry4Ba showed limited binding to CR11-MPED, the peptide synergized the toxicity of Cry4Ba to larvae. AgCad1 in the larval brush border is a binding protein for Cry4Ba toxin. On the basis of binding results and CR11-MPED synergism of Cry4Ba toxicity, AgCad1 is probably a Cry4Ba receptor.


Biochemistry | 2008

A 106-kDa Aminopeptidase Is a Putative Receptor for Bacillus thuringiensis Cry11Ba Toxin in the Mosquito Anopheles gambiae †

Rui Zhang; Gang Hua; Tracy M. Andacht; Michael J. Adang

Bacillus thuringiensis (Bt) insecticidal toxins bind to receptors on midgut epithelial cells of susceptible insects, and binding triggers biochemical events that lead to insect mortality. Recently, a 100-kDa aminopeptidase N (APN) was isolated from brush border membrane vesicles (BBMV) of Anopheles quadrimaculatus and shown to bind Cry11Ba toxin with surface plasmon resonance (SPR) detection [Abdullah et al. (2006) BMC Biochem. 7, 16]. In our study, a 106-kDa APN, called AgAPN2, released by phosphatidylinositol-specific phospholipase C (PI-PLC) from Anopheles gambiae BBMV was extracted by Cry11Ba bound to beads. The AgAPN2 cDNA was cloned, and analysis of the predicted AgAPN2 protein revealed a zinc-binding motif (HEIAH), three potential N-glycosylation sites, and a predicted glycosylphosphatidylinositol (GPI) anchor site. Immunohistochemistry localized AgAPN2 to the microvilli of the posterior midgut. A 70-kDa fragment of the 106-kDa APN was expressed in Escherichia coli. When purified, it competitively displaced 125I-Cry11Ba binding to An. gambiae BBMV and bound Cry11Ba on dot blot and microtiter plate binding assays with a calculated K d of 6.4 nM. Notably, this truncated peptide inhibited Cry11Ba toxicity to An. gambiae larvae. These results are evidence that the 106-kDa GPI-anchored APN is a specific binding protein, and a putative midgut receptor, for Bt Cry11Ba toxin.


Insect Biochemistry and Molecular Biology | 2003

Cloning of a Heliothis virescens 110 kDa aminopeptidase N and expression in Drosophila S2 cells.

David J Banks; Gang Hua; Michael J. Adang

We previously identified a novel Heliothis virescens 110 kDa aminopeptidase N (APN) that binds Bacillus thuringiensis (Bt) Cry1Ac and Cry1Fa delta-endotoxins, and cloned an internal region of the 110 kDa APN gene (Banks et al., 2001). Here we describe the RACE-PCR cloning and sequence of a cDNA encoding 110 kDa APN. The 110 kDa APN gene was transiently co-expressed with green fluorescent protein (GFP) in Drosophila S2 cells using the pIZT expression vector. Enrichment of total membranes purified from S2 cells transfected with the 110 kDa APN gene had 3.3 fold increased APN enzymatic activity relative to enriched total membranes purified from S2 cells transfected with vector alone. Whereas the majority of S2 cells transfected with the 110 kDa APN gene bound rhodamine-labeled Cry1Ac toxin, no S2 cells transfected with vector alone bound rhodamine-labeled Cry1Ac toxin. This indicates that toxin binding to whole cells is APN mediated. However, flow cytometry and microscopy indicated that 110 kDa APN transfected S2 cells exposed to Cry1Ac or Cry1Fa toxin did not experience an increase in membrane permeability, indicating that APN transfected cells were resistant to toxin. This suggests while the H. virescens 110 kDa APN functions as a Bt toxin binding protein, it does not mediate cytotoxicity when expressed in S2 cells.


Cell and Tissue Research | 2005

Comparison of the localization of Bacillus thuringiensis Cry1A δ-endotoxins and their binding proteins in larval midgut of tobacco hornworm, Manduca sexta

Jiang Chen; Mark R. Brown; Gang Hua; Michael J. Adang

Tobacco hornworm, Manduca sexta, is a model insect for studying the action of Bacillus thuringiensis (Bt) Cry toxins on lepidopterans. The proteins, which bind Bt toxins to midgut epithelial cells, are key factors involved in the insecticidal functions of the toxins. Three Cry1A-binding proteins, viz., aminopeptidase N (APN), the cadherin-like Bt-R1, and membrane-type alkaline phosphatase (m-ALP), were localized, by immunohistochemistry, in sections from the anterior, middle, and posterior regions of the midgut from second instar M. sexta larvae. Both APN and m-ALP were distributed predominantly along microvilli in the posterior region and to a lesser extent on the apical tip of microvilli in the anterior and middle regions. Bt-R1 was localized at the base of microvilli in the anterior region, over the entire microvilli in the middle region, and at both the apex and base of microvilli in the posterior region. The localization of rhodamine-labeled Cry1Aa, Cry1Ab, and Cry1Ac binding was determined on sections from the same midgut regions. Cry1Aa and Cry1Ab bound to the apical tip of microvilli almost equally in all midgut regions. Binding of Cry1Ac was much stronger in the posterior region than in the anterior and middle regions. Thus, binding sites for Bt proteins and Cry1A toxins are co-localized on the microvilli of M. sexta midgut epithelial cells.


Biochemistry | 2009

Anopheles gambiae Alkaline Phosphatase Is a Functional Receptor of Bacillus thuringiensis jegathesan Cry11Ba Toxin

Gang Hua; Rui Zhang; Krishnareddy Bayyareddy; Michael J. Adang

Alkaline phosphatases (ALPs, EC 3.1.3.1) isolated from lepidopteran and dipteran species are identified as receptors for Cry1Ac and Cry11Aa toxins, respectively [Jurat-Fuentes, J. L., and Adang, M. J. (2004) Eur. J. Biochem. 7, 3127-3135; Fernandez, L. E., et al. (2006) Biochem. J. 396, 77-84]. In our study, an alkaline phosphatase cDNA (AgALP1) was cloned from the midgut of Anopheles gambiae larvae. The encoded 63 kDa protein has a predicted glycosylphosphatidylinositol (GPI) anchor omega-site ((526)Asp), an N-glycosylation site ((239)Asn-Leu-Thr), and an O-glycosylation site ((312)Ser). AgALP1(t) was expressed in Escherichia coli and used to prepare antiserum and to analyze the interaction of AgALP with mosquitocidal Cry11Ba toxin. Anti-AgALP serum localized AgALP to the apical brush border in the anterior and posterior midgut of larvae and detected a 65 kDa species on a blot of brush border membrane vesicles (BBMVs) protein prepared from larvae. ALP activity was released from larval BBMVs prepared by phosphatidylinositol-specific phospholipase C (PIPLC) treatment, and after separation by two-dimensional gel electrophoresis and blotting, a chain of doublet spots at 65 kDa was detected by anti-AgALP. A subset of these doublet spots bound Cry11Ba on a reprobed blot. Heterologously expressed AgALP1(t) bound [(125)I]Cry11Ba on dot blots and reduced the level of binding of [(125)I]Cry11Ba to brush border membrane vesicles by 41%, a percentage comparable to that of unlabeled Cry11Ba and aminopeptidase AgAPN2(t1) peptide. AgALP1(t) binds Cry11Ba toxin with a high affinity (23.9 nM) and shares a binding site on Cry11Ba with AgAPN2(t1). In bioassays against An. gambiae larvae, the presence of AgALP1(t) reduced larval mortality from 78 to 8%. We conclude that AgALP1 is a binding protein and a functional receptor for Cry11Ba toxin.


Insect Biochemistry and Molecular Biology | 2014

Cadherin AdCad1 in Alphitobius diaperinus larvae is a receptor of Cry3Bb toxin from Bacillus thuringiensis

Gang Hua; Youngjin Park; Michael J. Adang

Bacillus thuringiensis (Bt) Cry proteins are used as components of biopesticides or expressed in transgenic crops to control diverse insect pests worldwide. These Cry toxins bind to receptors on the midgut brush border membrane and kill enterocytes culminating in larval mortality. Cadherin proteins have been identified as Cry toxin receptors in diverse lepidopteran, coleopteran, and dipteran species. In the present work we report a 185 kDa cadherin (AdCad1) from larvae of the lesser mealworm (Alphitobius diaperinus) larvae as the first identified receptor for Cry3Bb toxin. The AdCad1 protein contains typical structural components for Cry toxin receptor cadherins, including nine cadherin repeats (CR9), a membrane-proximal extracellular domain (MPED) and a cytosolic region. Peptides corresponding to the CR9 and MPED regions bound Cry3Bb toxin with high affinities (23 nM and 40 nM) and significantly synergized Cry3Bb toxicity against A. diperinus larvae. Silencing of AdCad1 expression through RNA interference resulted in highly reduced susceptibility to Cry3Bb in A. diperinus larvae. The CR9 peptide fed with toxin to RNAi-treated larvae restored Cry3Bb toxicity. These results are evidences that AdCad1 is a functional receptor of Cry3Bb toxin and that exogenously fed CR9 peptide can overcome the effect of reduced AdCad1expression on Cry3Bb toxicity to larvae.


Applied and Environmental Microbiology | 2009

Cadherin fragments from Anopheles gambiae synergize Bacillus thuringiensis Cry4Ba's toxicity against Aedes aegypti larvae.

Youngjin Park; Gang Hua; Mohd Amir Fursan Abdullah; Khalidur Rahman; Michael J. Adang

ABSTRACT A peptide from cadherin AgCad1 of Anopheles gambiae larvae was reported as a synergist of Bacillus thuringiensis subsp. israelensis Cry4Bas toxicity to the Anopheles mosquito (G. Hua, R. Zhang, M. A. Abdullah, and M. J. Adang, Biochemistry 47:5101-5110, 2008). We report that CR11 to the membrane proximal extracellular domain (MPED) (CR11-MPED) and a longer peptide, CR9 to CR11 (CR9-11), from AgCad1 act as synergists of Cry4Bas toxicity to Aedes aegypti larvae, but a Diabrotica virgifera virgifera cadherin-based synergist of Cry3 (Y. Park, M. A. F. Abdullah, M. D. Taylor, K. Rahman, and M. J. Adang, Appl. Environ. Microbiol. 75:3086-3092, 2009) did not affect Cry4Bas toxicity. Peptides CR9-11 and CR11-MPED bound Cry4Ba with high affinity (13 nM and 23 nM, respectively) and inhibited Cry4Ba binding to the larval A. aegypti brush border membrane. The longer CR9-11 fragment was more potent than CR11-MPED in enhancing Cry4Ba against A. aegypti.

Collaboration


Dive into the Gang Hua's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Zhang

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qi Zhang

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge