Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juan Luis Jurat-Fuentes is active.

Publication


Featured researches published by Juan Luis Jurat-Fuentes.


Applied and Environmental Microbiology | 2001

Importance of Cry1 δ-Endotoxin Domain II Loops for Binding Specificity in Heliothis virescens (L.)

Juan Luis Jurat-Fuentes; Michael J. Adang

ABSTRACT We constructed a model for Bacillus thuringiensis Cry1 toxin binding to midgut membrane vesicles from Heliothis virescens. Brush border membrane vesicle binding assays were performed with five Cry1 toxins that share homologies in domain II loops. Cry1Ab, Cry1Ac, Cry1Ja, and Cry1Fa competed with 125I-Cry1Aa, evidence that each toxin binds to the Cry1Aa binding site in H. virescens. Cry1Ac competed with high affinity (competition constant [Kcom] = 1.1 nM) for 125I-Cry1Ab binding sites. Cry1Aa, Cry1Fa, and Cry1Ja also competed for125I-Cry1Ab binding sites, though theKcom values ranged from 179 to 304 nM. Cry1Ab competed for 125I-Cry1Ac binding sites (Kcom = 73.6 nM) with higher affinity than Cry1Aa, Cry1Fa, or Cry1Ja. Neither Cry1Ea nor Cry2Aa competed with any of the 125I-Cry1A toxins. Ligand blots prepared from membrane vesicles were probed with Cry1 toxins to expand the model of Cry1 receptors in H. virescens. Three Cry1A toxins, Cry1Fa, and Cry1Ja recognized 170- and 110-kDa proteins that are probably aminopeptidases. Cry1Ab and Cry1Ac, and to some extent Cry1Fa, also recognized a 130-kDa molecule. Our vesicle binding and ligand blotting results support a determinant role for domain II loops in Cry toxin specificity for H. virescens. The shared binding properties for these Cry1 toxins correlate with observed cross-resistance in H. virescens.


PLOS ONE | 2011

Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis

Juan Luis Jurat-Fuentes; Lohitash Karumbaiah; S.R.K. Jakka; Changming Ning; Chenxi Liu; Kongming Wu; Jerreme Jackson; Fred Gould; Carlos A. Blanco; Maribel Portilla; Omaththage P. Perera; Michael J. Adang

Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests.


Journal of Biological Chemistry | 2004

Bt-R1a Extracellular Cadherin Repeat 12 Mediates Bacillus thuringiensis Cry1Ab Binding and Cytotoxicity

Gang Hua; Juan Luis Jurat-Fuentes; Michael J. Adang

The cadherin protein Bt-R1a is a receptor for Bacillus thuringiensis Cry1A toxins in Manduca sexta. Cry1Ab toxin is reported to bind specific epitopes located in extracellular cadherin repeat (CR) 7 and CR11 on Bt-R1 (Gomez, B., Miranda-Rios, J., Riudino-Pinera, E., Oltean, D. I., Gill, S. S., Bravo, A., and Soberon, M. (2002) J. Biol. Chem. 277, 30137–30143; Dorsch, J. A., Candas, M., Griko, N., Maaty, W., Midboe, E., Vadlamudi, R., and Bulla, L. (2002) Insect Biochem. Mol. Biol. 32, 1025–1036). We transiently expressed CR domains of Bt-R1a in Drosophila melanogaster Schneider 2 (S2) cells as fusion peptides between a signal peptide and a terminal region that included membrane-proximal, membrane-spanning, and cytoplasmic domains. A domain consisting of CR11 and 12 was the minimal 125I-Cry1Ab binding region detected under denaturing conditions. Only CR12 was essential for Cry1Ab binding and cytotoxicity to S2 cells when tested under native conditions. Under these conditions expressed CR12 bound 125I-Cry1Ab with high affinity (Kcom = 2.9 nm). Flow cytometry assays showed that expression of CR12 conferred susceptibility to Cry1Ab in S2 cells. Derivatives of Bt-R1a with separate deletions of CR7, 11, and 12 were expressed in S2 cells. Only deletion of CR12 caused loss of Cry1Ab binding and cytotoxicity. These results demonstrate that CR12 is the essential Cry1Ab binding component on Bt-R1 that mediates Cry1Ab-induced cytotoxicity.


Advances in Insect Physiology | 2014

Diversity of Bacillus thuringiensis Crystal Toxins and Mechanism of Action

Michael J. Adang; Neil Crickmore; Juan Luis Jurat-Fuentes

Parasporal crystals produced by Bacillus thuringiensis (Bt) bacteria are the main virulence factors underlying Bt toxicity to insects. Parasporal crystals are composed primarily of Cry and Cyt proteins that act on the midgut of susceptible insects. Cry proteins are an important component of Bt biopesticides and are vital tools for insect control via expression in transgenic crop plants. Some members of the Cry group are more distantly related including ETX/MTX and binary type toxins. Cry toxin structure and action involves critical steps in toxin activation, binding to receptors such as cadherin and then aminopeptidase or alkaline phosphatase probably in a ‘sequential binding’ manner. Specific Cry toxin–receptor interactions are a focus of this review. Recently, the importance of midgut ATP-binding cassette proteins to Cry intoxication of insects has been demonstrated. Mechanistic details involved in ‘sequential binding’ and ‘pore formation’ models are examined. The Cyt toxin of Bt subspecies israelensis is an important and interesting component in Cry–midgut interactions in mosquitoes. For some Cry toxins, Cyt serves as a receptor for docking to midgut membrane. Recent engineering work has demonstrated that Cyt can be re-targeted generating novel toxins for insect control. Overall, we review the remarkable progress made in the past 20 years in discovering novel Cry toxins and in elucidating complex mechanisms of Cry and Cyt toxin action; subjects relevant to the long-term control of insects that damage crops and vector human disease.


Applied and Environmental Microbiology | 2001

Binding analyses of Bacillus thuringiensis Cry δ-endotoxins using brush border membrane vesicles of Ostrinia nubilalis

Gang Hua; Luke Masson; Juan Luis Jurat-Fuentes; George E. Schwab; Michael J. Adang

ABSTRACT Transgenic corn expressing the Bacillus thuringiensisCry1Ab gene is highly insecticidal to Ostrinia nubilalis(European corn borer) larvae. We ascertained whether Cry1F, Cry9C, or Cry9E recognizes the Cry1Ab binding site on the O. nubilalis brush border by three approaches. An optical biosensor technology based on surface plasmon resonance measured binding of brush border membrane vesicles (BBMV) injected over a surface of immobilized Cry toxin. Preincubation with Cry1Ab reduced BBMV binding to immobilized Cry1Ab, whereas preincubation with Cry1F, Cry9C, or Cry9E did not inhibit BBMV binding. BBMV binding to a Cry1F-coated surface was reduced when vesicles were preincubated in Cry1F or Cry1Ab but not Cry9C or Cry9E. A radioligand approach measured 125I-Cry1Ab toxin binding to BBMV in the presence of homologous (Cry1Ab) and heterologous (Cry1Ac, Cry1F, Cry9C, or Cry9E) toxins. Unlabeled Cry1Ac effectively competed for 125I-Cry1Ab binding in a manner comparable to Cry1Ab itself. Unlabeled Cry9C and Cry9E toxins did not inhibit 125I-Cry1Ab binding to BBMV. Cry1F inhibited125I-Cry1Ab binding at concentrations greater than 500 nM. Cry1F had low-level affinity for the Cry1Ab binding site. Ligand blot analysis identified Cry1Ab, Cry1Ac, and Cry1F binding proteins in BBMV. The major Cry1Ab signals on ligand blots were at 145 kDa and 154 kDa, but a strong signal was present at 220 kDa and a weak signal was present at 167 kDa. Cry1Ac and Cry1F binding proteins were detected at 220 and 154 kDa. Anti-Manduca sexta aminopeptidase serum recognized proteins of 145, 154, and 167 kDa, and anti-cadherin serum recognized the 220 kDa protein. We speculate that isoforms of aminopeptidase and cadherin in the brush border membrane serve as Cry1Ab, Cry1Ac, and Cry1F binding proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin

Jiang Chen; Gang Hua; Juan Luis Jurat-Fuentes; Mohd Amir Fursan Abdullah; Michael J. Adang

The insecticidal crystal proteins produced by Bacillus thuringiensis (Bt) are broadly used to control insect pests with agricultural importance. The cadherin Bt-R1 is a binding protein for Bt Cry1A toxins in midgut epithelia of tobacco hornworm (Manduca sexta). We previously identified the Bt-R1 region most proximal to the cell membrane (CR12-MPED) as the essential binding region required for Cry1Ab-mediated cytotoxicity. Here, we report that a peptide containing this region expressed in Escherichia coli functions as a synergist of Cry1A toxicity against lepidopteran larvae. Far-UV circular dichroism and 1H-NMR spectroscopy confirmed that our purified CR12-MPED peptide mainly consisted of β-strands and random coils with unfolded structure. CR12-MPED peptide bound brush border membrane vesicles with high affinity (Kd = 32 nM) and insect midgut microvilli but did not alter Cry1Ab or Cry1Ac binding localization in the midgut. By BIAcore analysis we demonstrate that Cry1Ab binds CR12-MPED at high (9 nM)- and low (1 μM)-affinity sites. CR12-MPED-mediated Cry1A toxicity enhancement was significantly reduced when the high-affinity Cry1A-binding epitope (1416GVLTLNIQ1423) within the peptide was altered. Because the mixtures of low Bt toxin dose and CR12-MPED peptide effectively control target insect pests, our discovery has important implications related to the use of this peptide to enhance insecticidal activity of Bt toxin-based biopesticides and transgenic Bt crops.


Journal of Biological Chemistry | 2009

A novel Tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin.

Jeff Fabrick; Chris Oppert; Marcé D. Lorenzen; Kaley Morris; Brenda Oppert; Juan Luis Jurat-Fuentes

Cry toxins produced by the bacterium Bacillus thuringiensis are effective biological insecticides. Cadherin-like proteins have been reported as functional Cry1A toxin receptors in Lepidoptera. Here we present data that demonstrate that a coleopteran cadherin is a functional Cry3Aa toxin receptor. The Cry3Aa receptor cadherin was cloned from Tenebrio molitor larval midgut mRNA, and the predicted protein, TmCad1, has domain structure and a putative toxin binding region similar to those in lepidopteran cadherin B. thuringiensis receptors. A peptide containing the putative toxin binding region from TmCad1 bound specifically to Cry3Aa and promoted the formation of Cry3Aa toxin oligomers, proposed to be mediators of toxicity in lepidopterans. Injection of TmCad1-specific double-stranded RNA into T. molitor larvae resulted in knockdown of the TmCad1 transcript and conferred resistance to Cry3Aa toxicity. These data demonstrate the functional role of TmCad1 as a Cry3Aa receptor in T. molitor and reveal similarities between the mode of action of Cry toxins in Lepidoptera and Coleoptera.


Applied and Environmental Microbiology | 2003

Dual Resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa Toxins in Heliothis virescens Suggests Multiple Mechanisms of Resistance

Juan Luis Jurat-Fuentes; Fred Gould; Michael J. Adang

ABSTRACT One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.


FEBS Journal | 2013

The ATP‐binding cassette transporter subfamily C member 2 in Bombyx mori larvae is a functional receptor for Cry toxins from Bacillus thuringiensis

Shiho Tanaka; Kazuhisa Miyamoto; Hiroaki Noda; Juan Luis Jurat-Fuentes; Yasutaka Yoshizawa; Haruka Endo; Ryoichi Sato

Bacillus thuringiensis is the most widely used biopesticide, and its Cry toxin genes are essential transgenes for the generation of insect‐resistant transgenic crops. Recent reports have suggested that ATP‐binding cassette transporter subfamily C2 (ABCC2) proteins are implicated in Cry intoxication, and that a single amino acid insertion results in high levels of resistance to Cry1 toxins. However, there is currently no available direct evidence of functional interactions between ABCC2 and Cry toxins. To address this important knowledge gap, we investigated the role of Bombyx mori ABCC2 (BmABCC2) or its mutant from a Cry1Ab‐resistant B. mori strain on Cry1A toxin action. When we expressed BmABCC2 ectopically on Sf9 cells, it served as a functional receptor, and the single amino acid insertion found in BmABCC2 from Cry1Ab‐resistant larvae resulted in lack of susceptibility to Cry1Ab and Cry1Ac. Using the same expression system, we found that Bo. mori cadherin‐like receptor (BtR175) conferred susceptibility to Cry1A toxins, albeit to a lower degree than BmABCC2. Coexpression of BtR175 and BmABCC2 resulted in the highest cell susceptibility to Cry1A, Cry1F, and even the phylogenetically distant Cry8Ca toxin, when compared with expression of either receptor alone. The susceptibility observed in the coexpressing cells and that in Bo. mori larvae are likely to be correlated, suggesting that BtR175 and BmABCC2 are important factors determining larval susceptibility. Our study demonstrates, for the first time, Cry toxin receptor functionality for ABCC2, and highlights the crucial role of this protein and cadherin in the mechanism of action of Cry toxin.


Applied and Environmental Microbiology | 2002

Altered Glycosylation of 63- and 68-Kilodalton Microvillar Proteins in Heliothis virescens Correlates with Reduced Cry1 Toxin Binding, Decreased Pore Formation, and Increased Resistance to Bacillus thuringiensis Cry1 Toxins

Juan Luis Jurat-Fuentes; Fred Gould; Michael J. Adang

ABSTRACT The binding and pore formation abilities of Cry1A and Cry1Fa Bacillus thuringiensis toxins were analyzed by using brush border membrane vesicles (BBMV) prepared from sensitive (YDK) and resistant (YHD2) strains of Heliothis virescens. 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac toxins did not bind to BBMV from the resistant YHD2 strain, while specific binding to sensitive YDK vesicles was observed. Binding assays revealed a reduction in Cry1Fa binding to BBMV from resistant larvae compared to Cry1Fa binding to BBMV from sensitive larvae. In agreement with this reduction in binding, neither Cry1A nor Cry1Fa toxin altered the permeability of membrane vesicles from resistant larvae, as measured by a light-scattering assay. Ligand blotting experiments performed with BBMV and 125I-Cry1Ac did not differentiate sensitive larvae from resistant larvae. Iodination of BBMV surface proteins suggested that putative toxin-binding proteins were exposed on the surface of the BBMV from resistant insects. BBMV protein blots probed with the N-acetylgalactosamine-specific lectin soybean agglutinin (SBA) revealed altered glycosylation of 63- and 68-kDa glycoproteins but not altered glycosylation of known Cry1 toxin-binding proteins in YHD2 BBMV. The F1 progeny of crosses between sensitive and resistant insects were similar to the sensitive strain when they were tested by toxin-binding assays, light-scattering assays, and lectin blotting with SBA. These results are evidence that a dramatic reduction in toxin binding is responsible for the increased resistance and cross-resistance to Cry1 toxins observed in the YHD2 strain of H. virescens and that this trait correlates with altered glycosylation of specific brush border membrane glycoproteins.

Collaboration


Dive into the Juan Luis Jurat-Fuentes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cris Oppert

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar

Brenda Oppert

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Fred Gould

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omaththage P. Perera

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

S.R.K. Jakka

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos A. Blanco

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge