Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gang Xue is active.

Publication


Featured researches published by Gang Xue.


Water Research | 2009

Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide

Quanyuan Chen; Zhou Luo; Colin Hills; Gang Xue; Mark Tyrer

Lime is a preferred precipitant for the removal of heavy metals from industrial wastewater due to its relatively low cost. To reduce heavy metal concentration to an acceptable level for discharge, in this work, fly ash was added as a seed material to enhance lime precipitation and the suspension was exposed to CO2 gas. The fly ash-lime-carbonation treatment increased the particle size of the precipitate and significantly improved sedimentation of sludge and the efficiency of heavy metal removal. The residual concentrations of chromium, copper, lead and zinc in effluents can be reduced to (mg L(-1)) 0.08, 0.14, 0.03 and 0.45, respectively. Examination of the precipitates by XRD and thermal analysis techniques showed that calcium-heavy metal double hydroxides and carbonates were present. The precipitate agglomerated and hardened naturally, facilitating disposal without the need for additional solidification/stabilization measures prior to landfill. It is suggested that fly ash, lime and CO2, captured directly from flue gas, may have potential as a method for wastewater treatment. This method could allow the ex-situ sequestration of CO2, particularly where flue-gas derived CO2 is available near wastewater treatment facilities.


Journal of Hazardous Materials | 2011

Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites.

Gang Xue; Huanhuan Liu; Quanyuan Chen; Colin Hills; Mark Tyrer; Francis Innocent

A photocatalyst comprising nano-sized TiO(2) particles on granular activated carbon (GAC) was prepared by a sol-dipping-gel process. The TiO(2)/GAC composite was characterized by scanning electron microscopy (SEM), X-ray diffractiometry (XRD) and nitrogen sorptometry, and its photocatalytic activity was studied through the degradation of humic acid (HA) in a quartz glass reactor. The factors influencing photocatalysis were investigated and the GAC was found to be an ideal substrate for nano-sized TiO(2) immobilization. A 99.5% removal efficiency for HA from solution was achieved at an initial concentration of 15 mg/L in a period of 3h. It was found that degradation of HA on the TiO(2)/GAC composite was facilitated by the synergistic relationship between surface adsorption characteristics and photocatalytic potential. The fitting of experimental results with the Langmuir-Hinshelwood (L-H) model showed that the reaction rate constant and the adsorption constant values were 0.1124 mg/(L min) and 0.3402 L/mg. The latter is 1.7 times of the calculated value by fitting the adsorption equilibrium data into the Langmuir equation.


Journal of Hazardous Materials | 2009

Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor.

Shengbing He; Gang Xue; Bao-zhen Wang

Experiments have been carried out to investigate the effect of biological factors such as dissolved oxygen (DO), food/microorganism (F/M) ratio, carbon/nitrogen (C/N) ratio and pH on performance of SND in membrane bioreactor (MBR). It was found that a low DO was advantageous to SND on condition that nitrification was not inhibited, while F/M ratio and C/N ratio have reverse effects on SND, and pH should also be controlled in a suitable range. Based on the conventional activated sludge model, a deduction was conducted to illustrate that SND could take place from the theoretical aspect, and it was proved that high organics was effective in improving SND. In addition, a kinetic model for SND was constituted on the basis of batch test result, and the simulation nitrate saturation coefficient K(NO)(3) was much higher than that in a single-sludge wastewater treatment system.


Journal of Hazardous Materials | 2010

Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP).

Shengbing He; Gang Xue

Algal-based immobilization process was applied to treat the effluent from a secondary wastewater treatment plant. Batch test proved that algae could attach onto fiber-bundle carrier in 7 days, and then the algal-based immobilization reactor could reduce TN (total nitrogen) and TP (total phosphorus) significantly within 48 h. Based on the above investigations, the hydraulic retention time (HRT) of the algal-based immobilization reactor in continuous operation mode was determined to be 2 days. During the 91 days of experiment on the treating secondary effluent of Guang-Rao wastewater treatment plant, it was found that the fiber-bundle carrier could collect the heterobacteria and nitrifying bacteria gradually, and thus improved the COD removal efficiency and nitrification performance step by step. Results of the continuous operation indicated that the final effluent could meet the Chinese National First A-level Sewage Discharge Standard when the algal-based immobilization reactor reached steady state.


Journal of Hazardous Materials | 2013

Influence of Fenton's reagent doses on the degradation and mineralization of H-acid.

Huanhuan Liu; Quanyuan Chen; Yang Yu; Zhenhong Liu; Gang Xue

The recalcitrant H-acid (1-amino-8-naphthol-3,6-disulfonic acid) in aqueous solution was oxidized by Fenton process, focusing on the relation of Fentons reagent doses and degradation products. The experimental results showed that COD and TOC removals and biodegradability (BOD/COD ratio) of the solution increased with increasing Fentons reagent doses. Over 80% COD can be removed and the biodegradability was improved significantly. It was found that major SO3H and NH2 groups in H-acid molecules were mineralized to SO4(2-) and NH4(+) ions during Fenton oxidation processes. H-acid degradation intermediates with benzene structures substituted by hydroxyl and/or carboxyl groups were identified by GC-MS. It was also found that short-chain fatty acids primarily oxalic acid were degradation products of H-acid by Fenton oxidation. Oxalic acid accumulated could account for approximately 60% of the residual TOC. The degradation pathway of H-acid was proposed based on above analyses in this work.


Journal of Hazardous Materials | 2009

Application of accelerated carbonation with a combination of Na2CO3 and CO2 in cement-based solidification/stabilization of heavy metal-bearing sediment

Quanyuan Chen; Yujuan Ke; Lina Zhang; Mark Tyrer; Colin Hills; Gang Xue

The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO(2) as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1:1. The concentrations of mercury and other heavy metals in the leachates were below 0.10mg/L and 5mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na(2)CO(3) and CO(2) may practically apply to cement-based s/s of heavy metal-bearing sediment.


Bioresource Technology | 2013

Isolation and identification of an iopromide-degrading strain and its application in an A2/O system

Yanan Liu; Jinlong Hu; Bingjie Xu; Jun He; Pin Gao; Kaiying Liu; Gang Xue; Stéphanie Ognier

An iopromide (IOPr)-degrading bacterium was isolated from activated sludge of a wastewater treatment plant in Shanghai. Based on its morphology, physiological-biochemical characteristics and a phylogenetic analysis of its 16S rRNA sequence, the bacterium was identified and named as Pseudomonas sp. I-24. The optimum condition for degrading IOPr was at 30°C and pH 7.0. After 5 days, strain I-24 could degrade 30 mg/L IOPr by 99% in a basal salts medium with a 5% (V/V) inoculum and 200 mg/L starch as the primary substrate. When applied to an Anaerobic-Anoxic/Aerobic (A2/O) process, with the coexistence of other bacteria, the strain I-24 got lower (61.3%) IOPr removal, but in two A2/O systems (with and without I-24 inoculation), the CODcr removal were both approximately 95%. The trial dosed with strain I-24 showed better IOPr removal than the un-dosed one. I-24 sustained its abundance in the A2/O system during the experiment.


Chemosphere | 2018

Long-term impact of a tetracycline concentration gradient on the bacterial resistance in anaerobic-aerobic sequential bioreactors

Pin Gao; Wenli Xu; Xiaohui Ruan; Yajie Qian; Gang Xue; Hanzhong Jia

Wastewater treatment systems are considered as hotspots for release of antibiotic resistance genes (ARGs) into the environment. Anaerobic-aerobic sequential (AAS) bioreactors now are intensively used for wastewater treatment worldwide. However, the occurrence of ARGs in wastewater treatment systems exposed to low-level (i.e., sub-inhibitory) antibiotic is poorly known. Here, we studied the distribution patterns of seven tetracycline resistance genes (tet genes) including tet(A), tet(C), tet(G), tet(X), tet(M), tet(O), and tet(W), as well as one mobile element [class 1 integron (intI1)] in AAS bioreactors under exposure to tetracycline from 50 μg/L to 500 μg/L. Additionally, effect on the removal performance of nutrients and tetracycline in both anaerobic and aerobic units was also investigated. A tetracycline concentration gradient selected for bacterial resistance in the anaerobic reactor, with the exception of tet(A) and tet(W), and the tetracycline removal deteriorated by 47%. However, the abundance of tet and intI1 genes reduced in the subsequent aerobic unit, and the removal of tetracycline, soluble COD, and NH4+-N maintained at average efficiencies of 91%, 90%, and 93%, respectively. The level of tet(X) was largely unaffected by AAS treatment. It is notable that intI1 genes probably played a crucial role on the horizontal dissemination of tet genes. The tetracycline levels and intI1 genes appear to be the primary factors influencing the occurrence of tet genes in AAS bioreactors. Nonetheless, AAS treatments still show promise for reducing antibiotics, ARGs and mobile elements without affecting nutrient removal, and need further research for practical applications.


Bioresource Technology | 2018

Production of lactic acid from thermal pretreated food waste through the fermentation of waste activated sludge: Effects of substrate and thermal pretreatment temperature

Jun Li; Wenjuan Zhang; Xiang Li; Tingting Ye; Yanfei Gan; Ai Zhang; Hong Chen; Gang Xue; Yanan Liu

Valorization of organic-rich waste stream to lactic acid by the mixed microbial consortium has attracted tremendous research interests in recent years. In this study, thermal pretreatment was involved in co-fermentation of food waste (FW) and waste activated sludge (WAS) to enhance lactic acid production. First, sole FW was observed as the most suitable substrate employing thermal pretreatment for the generation of lactic acid. The fermentation time for reaching the maximal plateau was significantly shortened at a corresponding thermal pretreatment temperature. The mechanism study found that the enhancement of lactic acid yield was in accordance with the acceleration of solubilization and hydrolysis. Furthermore, the physicochemical characteristics of fermentative substrate and surface morphology of the fermentation mixture varied with the pretreatment temperatures. Further investigations of microbial community structure also revealed that the proportions of key microorganisms such as Bacillus and Lactobacillus were changed by the thermal pretreatment.


Journal of Hazardous Materials | 2018

Oxidation of cefalexin by thermally activated persulfate: Kinetics, products, and antibacterial activity change

Yajie Qian; Gang Xue; Jiabin Chen; Jinming Luo; Xuefei Zhou; Pin Gao; Qi Wang

While the widely used β-lactam antibiotics, such as cephalosporins, are known to be susceptible to oxidation by sulfate radical (SO4-), comprehensive study about SO4--induced oxidation of cephalosporins is still limited, such as the impact of water matrices, and the structure and antibacterial activity of transformation products. Herein, the oxidation of cefalexin (CFX), a most frequently detected cephalosporin, was systematically investigated by thermally activated persulfate (PS). CFX oxidation followed pseudo-first-order kinetics, and SO4- dominantly contributed to the overall oxidation of CFX. The impact of water matrices, such as Cl-, HCO3- and natural organic matter, on CFX degradation was predicted using a pseudo-steady-state kinetic model. The secondary reactive species, such as chlorine and carbonate radicals, were found to contribute to CFX degradation. Product analysis indicated oxidation of CFX to six products (molecular weight of 363), with two stereoisomeric sulfoxides as the primary oxidation products. It was thus suggested that the primary amine on the side chain, and the thioether sulfur and double bond on the six-membered ring were the reactive sites of CFX towards SO4- oxidation. Antibacterial activity assessment showed that the biological activity of CFX solution was significantly diminished after treatment by the thermally activated PS.

Collaboration


Dive into the Gang Xue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shengbing He

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge