Gang Zhang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gang Zhang.
Science of The Total Environment | 2016
Jing Ran; Dejian Wang; Can Wang; Gang Zhang; Hailin Zhang
The entry of heavy metals into the food chain is of concern for potential health risks. To investigate the spatial relationships of heavy metals in a regional soil-wheat system, 99 pairs of surface soil (0-15 cm) and wheat grain samples were collected from Changshu, China, a typical county in the Yangtze Delta region. Both soil and wheat grain samples were analyzed for total Cd, Cu, Ni, Pb, and Zn. DTPA-extractable metals and major physico-chemical properties were also determined for soil samples. Moderate accumulation of heavy metals was found in soils and wheat grains, especially Cd. However, the levels were within the target hazard quotients (THQ) safe values with respect to non-carcinogenic risks, but more attention should be paid to Cd. Spatially, Cd, Cu, Ni, and Zn in wheat grains and soils had similar geographical patterns, whereas Pb showed opposite trends. Cross-correlograms further quantitatively confirmed the spatial relationships of heavy metals in wheat grains and soils. In addition, heavy metals in wheat grains were significantly spatially correlated with most soil physio-chemical properties. Particularly, a set of regression models for Cd in wheat grains were established with a maximum predictive success of 65%. These models can be used to predict Cd in wheat grains, and thus allows farmers to decrease the threat by certain framing practices such as ameliorating soil pH or growing a less metal-accumulating cultivar.
Environmental Science and Pollution Research | 2015
Luji Bo; Dejian Wang; Tianling Li; Yan Li; Gang Zhang; Can Wang; Shanqing Zhang
Concentrations of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) were measured in water, sediments, Ceratophyllum (hornwort), and Bellamya sp. (edible snail) from residential, mixed (industrial and commercial), and agricultural areas with rural rivers in the Taihu Lake region, China. Zn concentrations were the highest, whereas Cd concentrations were the lowest among the six metals in water, sediments, and aquatic organisms. Cd was mainly present in the acid-soluble fraction, Cr in the residual fraction, and Pb in the reducible fraction of sediments. Heavy metal concentrations in water, sediments, and aquatic organisms in the three areas followed the order of the mixed area > residential area > agricultural area. Heavy metal concentrations in aquatic organisms were not only related to total metal concentrations in water and sediments but also to metal speciation concentrations in sediments. In addition, the bio-concentration factor (BCF) values of Cr, Cu, Pb, and Zn for Bellamya sp. were higher than those for Ceratophyllum, whereas the BCF values of Cd and Ni for Bellamya sp. were lower than those for Ceratophyllum. An ecological risk assessment of heavy metals in sediments showed that Cd posed the highest ecological risk to the environment. A health risk assessment showed that consuming Bellamya sp. from the mixed area could cause a potential health risk.
Soil and Sediment Contamination: An International Journal | 2015
Luji Bo; Dejian Wang; Gang Zhang; Can Wang
Heavy metal speciation and the associated ecological risks were investigated, using a European Community Bureau of Reference sequential extraction procedure, in sediments from the residential, mixed (residential and industrial), and agricultural areas of rural rivers in southern Jiangsu Province, China. Compared with the background values in Jiangsu Province soils, Cd was the metal with the highest contamination level, especially in the mixed area, followed by Cu and Zn. In the sediment samples from the agricultural area, the heavy metal concentrations were no more than two times greater than the background values. There were higher proportions of Cd in the acid-soluble fraction, Cr in the residual fraction, and Pb in the reducible fraction in the three areas. The heavy metal mobility was mainly controlled by the acid-soluble and reducible fractions. Cd could pose extremely high risks to the environment. In addition, the risks of heavy metal to the environment in the three areas followed the order: mixed area > residential area > agricultural area. Furthermore, a risk assessment code analysis showed that most of the sediment samples were classified as being of high to very high risk in the residential and mixed areas because of their Cd, Ni, and Zn concentrations. Heavy metal pollution in the residential and mixed areas is generally serious, and immediate remediation measures need to be taken.
Field Crops Research | 2013
Yuan Wang; Dejian Wang; Gang Zhang; Jun Wang
Agricultural Water Management | 2014
Jun Wang; Dejian Wang; Gang Zhang; Yuan Wang; Can Wang; Ying Teng; Peter Christie
Nutrient Cycling in Agroecosystems | 2012
Jun Wang; Dejian Wang; Gang Zhang; Can Wang
Journal of Soils and Sediments | 2015
Xiao Yan; Zongqiang Wei; Dejian Wang; Gang Zhang; Jun Wang
Environmental Science: Processes & Impacts | 2014
Jing Ran; Dejian Wang; Can Wang; Gang Zhang; Lipeng Yao
Acta Automatica Sinica | 2013
Xiao Yan; Dejian Wang; Gang Zhang; Lu-Ji Bo; Xiao-Lan Peng
Archive | 2010
Can Wang; Dejian Wang; Gang Zhang