Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ganming Liu is active.

Publication


Featured researches published by Ganming Liu.


Frontiers in Ecology and the Environment | 2014

Climate forcing of wetland landscape connectivity in the Great Plains

Nancy E. McIntyre; Christopher K. Wright; Sharmistha Swain; Katharine Hayhoe; Ganming Liu; Frank W. Schwartz; Geoffrey M. Henebry

Habitat connectivity is a landscape attribute critical to the long-term viability of many wildlife species, including migratory birds. Climate change has the potential to affect habitat connectivity within and across the three main wetland complexes in the Great Plains of North America: the prairie potholes of the northern plains, the Rainwater Basin of Nebraska, and the playas of the southern plains. Here, we use these wetlands as model systems in a graph-theory-based approach to establish links between climatic drivers and habitat connectivity for wildlife in current and projected wetland landscapes and to discern how that capacity can vary as a function of climatic forcing. We also provide a case study of macrosystems ecology to examine how the patterns and processes that determine habitat connectivity fluctuate across landscapes, regions, and continents.


Chemosphere | 2008

Model-based evaluation of controlled-release systems in the remediation of dissolved plumes in groundwater

Eung Seok Lee; Ganming Liu; Franklin W. Schwartz; Yongje Kim; Motomu Ibaraki

Controlled-release, semi-passive reactive barrier systems have been recently developed as a long-term treatment option for controlling the spread of contaminant plumes in groundwater. This paper describes a new computer code, and applies it to study coupled processes of solute release, reaction, and mass transport in an in situ remediation scheme using the controlled release of potassium permanganate. Confidence with the modeling approach was developed by model verifications and simulating results of a pilot-scale test-cell experiment. Sensitivity analyses indicated the possibilities of treatment inefficiencies due to inability of transverse dispersion to mix the permanganate (MnO(4)(-)) within the zone of reaction, fluctuations in source strength due to variations in flow velocity, and the small length of treatment zone due to strong soil utilization of MnO(4)(-). Although problems associated with the fluctuating source strength and strong soil utilization can be addressed by optimizing the release rate, the inefficiency of transverse dispersion to create mixing could pose a serious limitation. Through a series of model simulations, a system of injection/withdrawal wells in a doublet arrangement was developed to facilitate lateral spreading and mixing of MnO(4)(-). A well-mixed, stable MnO(4)(-) zone with predetermined size (DxL=8m x 2m) and concentration ranges (1.5-20 mg l(-1)) was created by four 1-day injection/withdrawal pumping periods over 24 d. This type of mixing zone may persist for many years with periodic well mixing and replacements of exhausted controlled-release forms. Coupled use of the generalized code with field hydrologic data will help to optimize the design and operation of controlled-release systems in practice.


Water Resources Research | 2015

Discharge and water‐depth estimates for ungauged rivers: Combining hydrologic, hydraulic, and inverse modeling with stage and water‐area measurements from satellites

Ganming Liu; Franklin W. Schwartz; Kuo Hsin Tseng; C. K. Shum

Anticipating future global freshwater scarcity and providing mitigation require timely knowledge of spatiotemporal dynamics of discharge for gauged and, more challengingly, ungauged rivers. This study describes a coupled hydrologic (SWAT) and hydraulic (XSECT) modeling approach set in a genetic algorithm framework for estimating discharge and water depth for ungauged rivers from space. The method was tested in the Red River of the North basin by comparing simulated discharges and depths from 2006 to 2010 to in situ observations from across the basin. Results showed that calibration using only remotely sensed data (i.e., water levels from ENVISAT altimetry and water extents from LANDSAT) along the main stem of the Red River yielded daily and monthly estimates of river discharge, which correlated to measured discharges at three gaging stations on the main stem with R2 values averaging 0.822 and 0.924, respectively. The comparisons of modeled and measured discharges were also extended to smaller tributaries, yielding a mean R2 of 0.809 over seven gaging stations. The modeling approach also provided estimates of water depth that correlated to observations at four stations with an average R2 of 0.831. We conclude that the integrated modeling approach is able to estimate discharge and water depth from space for larger ungauged rivers. This study also implies that in situ discharge data may not be necessary for successful hydrologic model calibration.


Remote Sensing | 2016

Assessment of the Impact of Reservoirs in the Upper Mekong River Using Satellite Radar Altimetry and Remote Sensing Imageries

Kuan Ting Liu; Kuo Hsin Tseng; C. K. Shum; Chian Yi Liu; Chung Yen Kuo; Ganming Liu; Yuanyuan Jia; Kun Shang

Water level (WL) and water volume (WV) of surface-water bodies are among the most crucial variables used in water-resources assessment and management. They fluctuate as a result of climatic forcing, and they are considered as indicators of climatic impacts on water resources. Quantifying riverine WL and WV, however, usually requires the availability of timely and continuous in situ data, which could be a challenge for rivers in remote regions, including the Mekong River basin. As one of the most developed rivers in the world, with more than 20 dams built or under construction, Mekong River is in need of a monitoring system that could facilitate basin-scale management of water resources facing future climate change. This study used spaceborne sensors to investigate two dams in the upper Mekong River, Xiaowan and Jinghong Dams within China, to examine river flow dynamics after these dams became operational. We integrated multi-mission satellite radar altimetry (RA, Envisat and Jason-2) and Landsat-5/-7/-8 Thematic Mapper (TM)/Enhanced Thematic Mapper plus (ETM+)/Operational Land Imager (OLI) optical remote sensing (RS) imageries to construct composite WL time series with enhanced spatial resolutions and substantially extended WL data records. An empirical relationship between WL variation and water extent was first established for each dam, and then the combined long-term WL time series from Landsat images are reconstructed for the dams. The R2 between altimetry WL and Landsat water area measurements is >0.95. Next, the Tropical Rainfall Measuring Mission (TRMM) data were used to diagnose and determine water variation caused by the precipitation anomaly within the basin. Finally, the impact of hydrologic dynamics caused by the impoundment of the dams is assessed. The discrepancy between satellite-derived WL and available in situ gauge data, in term of root-mean-square error (RMSE) is at 2–5 m level. The estimated WV variations derived from combined RA/RS imageries and digital elevation model (DEM) are consistent with results from in situ data with a difference at about 3%. We concluded that the river level downstream is affected by a combined operation of these two dams after 2009, which has decreased WL by 0.20 m·year−1 in wet seasons and increased WL by 0.35 m·year−1 in dry seasons.


Wetlands | 2016

Characterizing the Climate-Driven Collapses and Expansions of Wetland Habitats with a Fully Integrated Surface–Subsurface Hydrologic Model

Ganming Liu; Franklin W. Schwartz; Christopher K. Wright; Nancy E. McIntyre

Links between climatic forcing and wetland habitats can be conceptualized using a graph-theoretical approach, which treats wetlands as nodes to map habitat connectivity and to define habitat networks for ecological analysis. The first and most crucial step in creating a network model, however, is to characterize the dynamic behaviors of the nodes, i.e., the occurrence of wetlands with ponded water, or water bodies. For the first time, this study applies a 3-D, fully integrated surface and subsurface flow model, HydroGeoSphere (HGS), to simulate the hydrologic dynamics of wetlands in the Prairie Pothole Region (PPR) and to characterize the resulting habitat networks as a function of climate variability. Results show HGS is able to simulate water movement in both surface and subsurface domains and capture “fill-spill” and coalescence/disaggregation behaviors of wetlands as they respond to wet and dry climatic conditions. Our simulations for a small representative subarea of the PPR show wetland networks in the PPR could easily shrink, degrade, or even collapse when the climate becomes drier. This study demonstrates the potential in applying sophisticated hydrologic models to solve critical ecological problems and the practical implications for water-resources management, conservation planning and decision-making in the PPR.


Water Resources Research | 2014

On modeling the paleohydrologic response of closed‐basin lakes to fluctuations in climate: Methods, applications, and implications

Ganming Liu; Franklin W. Schwartz

Climate reconstructions using tree rings and lake sediments have contributed significantly to the understanding of Holocene climates. Approaches focused specifically on reconstructing the temporal water-level response of lakes, however, are much less developed. This paper describes a statistical correlation approach based on time series with Palmer Drought Severity Index (PDSI) values derived from instrumental records or tree rings as a basis for reconstructing stage hydrographs for closed-basin lakes. We use a distributed lag correlation model to calculate a variable, ωt that represents the water level of a lake at any time t as a result of integrated climatic forcing from preceding years. The method was validated using both synthetic and measured lake-stage data and the study found that a lakes “memory” of climate fades as time passes, following an exponential-decay function at rates determined by the correlation time lag. Calculated trends in ωt for Moon Lake, Rice Lake, and Lake Mina from A.D. 1401 to 1860 compared well with the established chronologies (salinity, moisture, and Mg/Ca ratios) reconstructed from sediments. This method provides an independent approach for developing high-resolution information on lake behaviors in preinstrumental times and has been able to identify problems of climate signal deterioration in sediment-based climate reconstructions in lakes with a long time lag.


Water Resources Research | 2009

Systematics in the size structure of prairie pothole lakes through drought and deluge

Bo Zhang; Franklin W. Schwartz; Ganming Liu


Water Resources Research | 2011

An integrated observational and model‐based analysis of the hydrologic response of prairie pothole systems to variability in climate

Ganming Liu; Franklin W. Schwartz


Water Resources Research | 2012

Climate-driven variability in lake and wetland distribution across the Prairie Pothole Region: From modern observations to long-term reconstructions with space-for-time substitution

Ganming Liu; Franklin W. Schwartz


Environmental Earth Sciences | 2013

Complex baseflow in urban streams: an example from central Ohio, USA

Ganming Liu; Franklin W. Schwartz; Yongje Kim

Collaboration


Dive into the Ganming Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuo Hsin Tseng

National Central University

View shared research outputs
Top Co-Authors

Avatar

Bo Zhang

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

Christopher K. Wright

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge