Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaobing Wu is active.

Publication


Featured researches published by Gaobing Wu.


Applied Microbiology and Biotechnology | 2009

Improved catalytic efficiency of Endo-β-1,4-glucanase from Bacillus subtilis BME-15 by directed evolution

Ling Lin; Xin Meng; Pengfu Liu; Yuzhi Hong; Gaobing Wu; Xiaoluo Huang; Congcong Li; Junli Dong; Liang Xiao; Ziduo Liu

Bacillus subtilis endo-β-1,4-glucanase (Cel5A) hydrolyzes cellulose by cleavage of the internal bonds in the glucose chains, producing new ends randomly. Using directed evolution techniques of error-prone polymerase chain reaction (PCR) and DNA shuffling, several Cel5A variants with improved catalytic activity had been screened from the mutant library, which contained 71,000 colonies. Compared with the wild-type enzyme, the variants (M44-11, S75 and S78) showed 2.03 to 2.68-fold increased activities toward sodium carboxymethyl cellulose (CMC), while the M44-11 also exhibited a wider pH tolerance and higher thermostability. Structural models of M44-11, S75, S78, and WT proteins revealed that most of the substitutions were not located in the strictly conserved regions, except the mutation V255A of S75, which was closed to the nucleophile Glu257 in the catalytic center of the enzyme. Moreover, V74A and D272G of M44-11, which were not located in the substrate binding sites and the catalytic center, might result in improved stability and catalytic activity. These results provided useful references for directed evolution of the enzymes that belonged to the glycoside hydrolase family 5 (GH5).


International Journal of Biological Macromolecules | 2015

A cold-adapted, solvent and salt tolerant esterase from marine bacterium Psychrobacter pacificensis.

Gaobing Wu; Xiangnan Zhang; Lu Wei; Guojie Wu; Ashok Kumar; Tao Mao; Ziduo Liu

Lipolytic enzymes with unique physico-chemical characteristics are gaining more attention for their immense industrial importance. In this study, a novel lipolytic enzyme (Est11) was cloned from the genomic library of a marine bacterium Psychrobacter pacificensis. The enzyme was expressed in Escherichia coli and purified to homogeneity with molecular mass of 32.9kDa. The recombinant Est11 was able to hydrolyze short chain esters (C2-C8) and displayed an optimum activity against butyrate ester (C4). The optimal temperature and pH were 25°C and 7.5, respectively. Est11 retained more than 70% of its original activity at 10°C, suggesting that it was a cold-active esterase. The enzyme was highly active and stable at high concentration of NaCl (5M). Further, incubation with ethanol, isopropanol, propanediol, DMSO, acetonitrile, and glycerol rendered remarkable positive effects on Est11 activity. Typically, even at the concentration of 30% (v/v), ethanol, DMSO, and propanediol increased Est11 activity by 1.3, 2.0, and 2.4-folds, respectively. This new robust enzyme with remarkable properties like cold-adaptability, exceptional tolerance to salt and organic solvents provides us a promising candidate to meet the needs of some harsh industrial processes.


Enzyme and Microbial Technology | 2016

Characterization of a novel cold active and salt tolerant esterase from Zunongwangia profunda

Mohammad Asadur Rahman; Umma Culsum; Wenhao Tang; Shaowei Zhang; Gaobing Wu; Ziduo Liu

A novel cold active esterase, EstLiu was cloned from the marine bacterium Zunongwangia profunda, overexpressed in E. coli BL21 (DE3) and purified by glutathione-S transferase (GST) affinity chromatography. The mature esterase EstLiu sequence encodes a protein of 273 amino acids residues, with a predicted molecular weight of 30KDa and containing the classical pentapeptidase motif from position 156 to 160 with the catalytic triad Ser158-Asp211-His243. Although, EstLiu showed 64% similarity with the hypothetical esterase from Chryseobacterium sp. StRB126 (WP_045498424), phylogenetic analysis showed it had no similarity with any of the established family of lipases/esterases, suggesting that it could be considered as a new family. The purified enzyme showed broad substrate specificity with the highest hydrolytic activity against p-nitrophenyl butyrate (C4). EstLiu showed remarkable activity (75%) at 0°Cand the optimal activity at pH 8.0 and 30°C with good thermostability and quickened inactivation above 60°C. EstLiu retained 81, 103, 67 and 78% of its original activity at 50% (v/v) in ethanol, isopropanol, DMSO and ethylene glycol, respectively. In the presence of Tween 20, Tween 80 and Triton X-100, EstLiu showed 88, 100 and 117% of relative activity. It is also co-factor independent. The high activity at low temperature and desirable stability in organic solvents and salts of this novel family esterase represents a good evidence of novel biocatalyst. Overall, this novel enzyme showed better activity than previously reported esterases in extreme reaction conditions and could promote the reaction in both aqueous and non-aqueous conditions, indicating its great potential for industrial applications.


Colloids and Surfaces B: Biointerfaces | 2015

Cellulose binding domain assisted immobilization of lipase (GSlip-CBD) onto cellulosic nanogel: characterization and application in organic medium.

Ashok Kumar; Shaowei Zhang; Gaobing Wu; Cheng Chao Wu; Junpeng Chen; Ram Baskaran; Ziduo Liu

A cbd gene was cloned into the C-terminal region of a lip gene from Geobacillus stearothermophilus. The native lipase (43.5 kDa) and CBD-Lip fusion protein (60.2 kDa) were purified to homogeneity by SDS-PAGE. A highly stable cellulosic nanogel was prepared by controlled hydrolysis of microcrystalline cellulose onto which the CBD-lip fusion protein was immobilized through bio-affinity based binding. The nanogel-bound lipase showed optimum activity at 55 °C, and it remains stable and active at pH 10-10.5. Furthermore, the immobilized lipase showed an over two-fold increase of relative activity in the presence of DMSO, isopropanol, isoamyl alcohol and n-butanol, but a mild activity decrease at a low concentration of methanol and ethanol. The immobilized biocatalyst retained ~50% activity after eight repetitive hydrolytic cycles. Enzyme kinetic studies of the immobilized lipase showed a 1.24 fold increase in Vmax and 5.25 fold increase in kcat towards p-NPP hydrolysis. Additionally, the nanogel bound lipase was tested to synthesize a biodiesel ester, ethyl oleate in DMSO. Kinetic analysis showed the km 100.5 ± 4.3 mmol and Vmax 0.19 ± 0.015 mmolmin(-1) at varied oleic acid concentration. Also, the values of km and Vmax at varying concentration of ethanol were observed to be 95.9 ± 13.9 mmol and 0.22 ± 0.013 mmolmin(-1) respectively. The maximum yield of ethyl oleate 111.2 ± 1.24 mM was obtained under optimized reaction conditions in organic medium. These results suggest that this immobilized biocatalyst can be used as an efficient tool for the biotransformation reactions on an industrial scale.


Enzyme and Microbial Technology | 2014

Improved thermostability of esterase from Aspergillus fumigatus by site-directed mutagenesis.

Shanshan Zhang; Gaobing Wu; Shiyu Feng; Ziduo Liu

A 1.020-bp esterase gene, estQ, encoding for a protein of 339 amino acids, was cloned from Aspergillus fumigatus and expressed in E. coli. EstQ exhibited the optimal activity around 40 °C and pH 9.0. In order to obtain more thermostable esterases, three mutants (A134T, V160T, A134T-V160T) were constructed by site-directed mutagenesis and also characterized for further research. Compared to A134T and V160T displaying their optimum activity at 40 °C, A134T-V160T exhibited a 5 °C higher optimal temperature and a longer half-life more than 24 times than that of WT at 50 °C. All the mutants displayed favorable effects on thermostability and retained 53-76% activity after pre-incubation for 30 min at 45 °C, about 20-40% higher than that of the WT. With an increase in Km of the three mutants, a decrease in catalytic efficiency in kcat/Km was observed in mutant V160T and A134T-V160T against p-nitrophenyl butyrate. Homology models of WT and A134T-V160T were built to understand the structure-function relationship. The analysis results showed that the improved thermostability may be due to the favorable interaction and additional hydrogen bonds formed in the mutants by substitution of hydrophobic residues with hydrophilic residues. This study provide useful theoretical reference for enzyme evolution in vitro.


PLOS ONE | 2013

Improving glyphosate oxidation activity of glycine oxidase from Bacillus cereus by directed evolution.

Tao Zhan; Kai Zhang; Yangyan Chen; Yongjun Lin; Gaobing Wu; Lili Zhang; Pei Yao; Zongze Shao; Ziduo Liu

Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops.


Infection and Immunity | 2009

Investigation of new dominant-negative inhibitors of anthrax protective antigen mutants for use in therapy and vaccination.

Sha Cao; Aizhen Guo; Ziduo Liu; Yadi Tan; Gaobing Wu; Chengcai Zhang; Yaxing Zhao; Huanchun Chen

ABSTRACT The lethal toxin (LeTx) of Bacillus anthracis plays a key role in the pathogenesis of anthrax. The protective antigen (PA) is a primary part of the anthrax toxin and forms LeTx by combination with lethal factor (LF). Phenylalanine-427 (F427) is crucial for PA function. This study was designed to discover potential novel therapeutic agents and vaccines for anthrax. This was done by screening PA mutants that were mutated at the F427 residue for a dominant-negative inhibitory (DNI) phenotype which was nontoxic but inhibited the toxicity of the wild-type LeTx. For this, PA residue F427 was first mutated to each of the other 19 naturally occurring amino acids. The cytotoxicity and DNI phenotypes of the mutated PA proteins were tested in the presence of 1 μg/ml LF in RAW264.7 cells and were shown to be dependent on the individual amino acid replacements. A total of 16 nontoxic mutants with various levels of DNI activity were identified in vitro. Among them, F427D and F427N mutants had the highest DNI activities in RAW264.7 cells. Both mutants inhibited LeTx intoxication in mice in a dose-dependent way. Furthermore, they induced a Th2-predominant immune response and protected mice against a challenge with five 50% lethal doses of LeTx. The protection was correlated mainly with a low level of interleukin-1β (IL-1β) and with high levels of PA-specific immunoglobulin G1, IL-6, and tumor necrosis factor alpha. Thus, PA DNI mutants, such as F427D and F427N mutants, may serve in the development of novel therapeutic agents and vaccines to fight B. anthracis infections.


Enzyme and Microbial Technology | 2016

Characterization and directed evolution of BliGO, a novel glycine oxidase from Bacillus licheniformis

Kai Zhang; Yiming Guo; Pei Yao; Yongjun Lin; Ashok Kumar; Ziduo Liu; Gaobing Wu; Lili Zhang

Glycine oxidase (GO) has great potential for use in biosensors, industrial catalysis and agricultural biotechnology. In this study, a novel GO (BliGO) from a marine bacteria Bacillus licheniformis was cloned and characterized. BliGO showed 62% similarity to the well-studied GO from Bacillus subtilis. The optimal activity of BliGO was observed at pH 8.5 and 40°C. Interestingly, BliGO retained 60% of the maximum activity at 0°C, suggesting it is a cold-adapted enzyme. The kinetic parameters on glyphosate (Km, kcat and k(cat)/K(m)) of BliGO were 11.22 mM, 0.08 s(-1), and 0.01 mM(-1) s(-1), respectively. To improve the catalytic activity to glyphosate, the BliGO was engineered by directed evolution. With error-prone PCR and two rounds of DNA shuffling, the most evolved mutant SCF-4 was obtained from 45,000 colonies, which showed 7.1- and 8-fold increase of affinity (1.58 mM) and catalytic efficiency (0.08 mM(-1) s(-1)) to glyphosate, respectively. In contrast, its activity to glycine (the natural substrate of GO) decreased by 113-fold. Structure modeling and site-directed mutation study indicated that Ser51 in SCF-4 involved in the binding of enzyme with glyphosate and played a crucial role in the improvement of catalytic efficiency.


Applied Microbiology and Biotechnology | 2012

Fusing the vegetative insecticidal protein Vip3Aa7 and the N terminus of Cry9Ca improves toxicity against Plutella xylostella larvae.

Fang Dong; Ruiping Shi; Shanshan Zhang; Tao Zhan; Gaobing Wu; Jie Shen; Ziduo Liu

Bacillus thuringiensis insecticidal crystal proteins (ICPs) and vegetative insecticidal proteins (VIPs) have been widely used as a kind of safe bio-insecticides. A problem that has been of concern worldwide is how to improve their insecticidal activities. In this study, to determine the synergism between VIPs and ICPs effect on insecticidal activity, a construct that produces a chimeric protein of the Vip3Aa7 and the N terminus ofCry9Ca, named V3AC9C, was expressed in Escherichia coli BL21 cells. In additional experiments, the V3AC9C chimeric protein, the single Vip3Aa7, and the single N terminus of Cry9Ca were treated with trypsin. SDS–PAGE showed that the V3AC9C could be processed into two single toxins. Bioassays tested on third instar larvae of Plutella xylostella showed that the toxicity of the chimeric protein was markedly better than either of the single toxins. Interestingly, the toxicity of the chimeric protein was 3.2-fold higher than a mixture of the Vip3Aa7 and Cry9Ca toxins (mass ratio of 1:1). The synergism factor (SF) of chimeric protein containing Vip3Aa7 and Cry9Ca was calculated to be 4.79. The SF in mixture of toxins is only 1.46. Hence, the effect was more than the sum of the Vip3Aa7 and Cry9C activities. Analysis of the protein’s solubility showed that the Vip3Aa7 helped the N terminus of Cry9Ca to dissolve in an alkaline buffer. It was concluded that the increase in the toxicity of the V3AC9C chimeric protein over the constituent proteins mainly resulted from this increase in solubility. These results lay a foundation for the development of a new generation of bio-insecticides and multi-gene transgenic plants.


International Journal of Biological Macromolecules | 2015

Improvement of glycine oxidase by DNA shuffling, and site-saturation mutagenesis of F247 residue

Pei Yao; Yongjun Lin; Gaobing Wu; Yulin Lu; Tao Zhan; Ashok Kumar; Lili Zhang; Ziduo Liu

Glyphosate is a broad spectrum herbicide widely used throughout the world, and it could be degraded by glycine oxidase (GO) through CN bond cleavage. For a better understanding of the structure-function relationship and improving the activity of B3S1 (GO from Bacillus cereus), DNA shuffling was performed. A mutant B4S7 (The Km, Vmax, kcat and kcat/Km values on glyphosate were 0.1 mM, 0.002401 mM min(-1), 3.62 min(-1) and 36.2 mM(-1) min(-1), respectively. The four parameters on glycine were 50.34 mM, 0.001983 mM min(-1), 2.18 min(-1) and 0.04 mM(-1) min(-1), respectively) was obtained from 10,000 clones, which presented a 3.9-fold increase of the specificity constant (the kcat/Km ratio between glyphosate and glycine) compared with B3S1. Especially, the Km value of B4S7 to glyphosate was much less than those of the reported GO. Structure modeling and molecular docking indicated that the novel mutation point F247S was close to the active site of the enzyme. To identify the role of the site, the remaining 19 amino acids were introduced into the site by site-saturation mutagenesis. The result showed that compared with B3S1, the specificity constant of mutant F247S and F247R increased 0.64-fold and 1.04-fold, respectively. While the specificity constant of mutant F247E decreased 2.01-fold. Therefore, the site 247 plays a crucial role in regulating the substrate specificity. This study provides new information on the structure-function relationship of glycine oxidase and the development of glyphosate-tolerant crops.

Collaboration


Dive into the Gaobing Wu's collaboration.

Top Co-Authors

Avatar

Ziduo Liu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Aizhen Guo

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Chunfang Feng

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Sha Cao

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yuzhi Hong

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ashok Kumar

Jaypee University of Information Technology

View shared research outputs
Top Co-Authors

Avatar

Yongjun Lin

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tao Zhan

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Ling Lin

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoluo Huang

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge