Gargi Ghosh
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gargi Ghosh.
BMC Cancer | 2012
Gargi Ghosh; Xiaojun Lian; Stephen J. Kron; Sean P. Palecek
BackgroundEpidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown.MethodsAn erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity in vitro were assessed in erlotinib resistant H1650-ER1 cells.ResultsThe erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib.ConclusionsOur findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties.
Materials Science and Engineering: C | 2014
Mao Ye; Pravansu S. Mohanty; Gargi Ghosh
Successful engineering of functional biological substitutes requires scaffolds with three-dimensional interconnected porous structure, controllable rate of biodegradation, and ideal mechanical strength. In this study, we report the development and characterization of micro-porous PVA scaffolds fabricated by freeze drying method. The impact of molecular weight of PVA, surfactant concentration, foaming time, and stirring speed on pore characteristics, mechanical properties, swelling ratio, and rate of degradation of the scaffolds was characterized. Results show that a foaming time of 60s, a stirring speed of 1,000 rpm, and a surfactant concentration of 5% yielded scaffolds with rigid structure but with interconnected pores. Study also demonstrated that increased foaming time increased porosity and swelling ratio and reduced the rigidity of the samples.
Biosensors and Bioelectronics | 2013
Mohammad Ali Al-Ameen; Gargi Ghosh
Vascular endothelial growth factor (VEGF) plays a crucial role in vasculogenesis (blood vessel formation) and angiogenesis (capillary formation from a pre-existing blood vessel). Dysregulation of VEGF has been associated with several diseases including cancer, rheumatoid arthritis, and psoriasis. As a result, serum level of VEGF has important implications as biomarker for different clinical disorders as well as for subsequent therapy monitoring. A simple detection method capable of rapid and sensitive analysis of VEGF in serum of patients with different clinical disorders is of paramount importance. Here, we report the fabrication and utilization of capture-antibody immobilized macro-porous poly(ethylene) glycol diacrylate (PEGDA) hydrogel microspheres for quantitative and reproducible measurement of VEGF. We demonstrate that induction of porosity using PEG porogen improves the sensitivity of this simple hydrogel microsphere based system with a detection limit of 2.5 pg/ml; indicating that the sensitivity of the assay exceeds that of the conventional technologies.
Materials Science and Engineering: C | 2016
Swetaparna Mohanty; Yang Wu; Nilay Chakraborty; Pravansu S. Mohanty; Gargi Ghosh
Cryopreservation or cryostorage of tissue engineered constructs can enhance the off-the shelf availability of these products and thus can potentially facilitate the commercialization or clinical translation of tissue engineered products. Encapsulation of cells within hydrogel matrices, in particular alginate, is widely used for fabrication of tissue engineered constructs. While previous studies have explored the cryopreservation response of cells encapsulated within alginate matrices, systematic investigation of the impact of alginate concentration on the metabolic activity and functionality of cryopreserved cells is lacking. The objective of the present work is to determine the metabolic and angiogenic activity of cryopreserved human dermal fibroblasts encapsulated within 1.0%, 1.5% and 2.0% (w/v) alginate matrices. In addition, the goal is to compare the efficacy of dimethyl sulfoxide (DMSO) and trehalose as cryoprotectant. Our study revealed that the concentration of alginate plays a significant role in the cryopreservation response of encapsulated cells. The lowest metabolic activity of the cryopreserved cells was observed in 1% alginate microspheres. When higher concentration of alginate was utilized for cell encapsulation, the metabolic and angiogenic activity of the cells frozen in the absence of cryoprotectants was comparable to that observed in the presence of DMSO or trehalose.
Journal of The Mechanical Behavior of Biomedical Materials | 2016
Ji Li; Yang Wu; Nicholas Schimmel; Mohammad Ali Al-Ameen; Gargi Ghosh
The pathogenesis of cancer is often driven by the modulation of the tumor microenvironment. Recent reports have highlighted that the progressive stiffening of tumor matrix is crucial for malignant transformation. Though extensive work has been done analyzing the mechanotransductive signals involved in tumor progression, it is still not clear whether the stiffness induced changes in cancer cell behavior is conserved across the invasive/aggressive phenotype of cells. Here, we used synthetic hydrogel based cell culture platform to correlate the aggressive potential of the breast cancer cells to the responses to matrix stiffness. The cellular functions such as proliferation, migration, and angiogenic capability were characterized. We report that the proliferation and motility of the highly aggressive cell line MDA-MB-231 increased with increase in matrix rigidity. We also demonstrated for the first time that the change in matrix stiffness stimulated the angiogenic activity of these cells as manifested from enhanced expression of vascular endothelial growth factor (VEGF). Inhibition of actomyosin contractility attenuated proliferation of MDA-MB-231 cells on stiff matrices while promoted the growth on soft gels. In addition, the release of VEGF was reduced upon inhibition of contractility. The less and non-aggressive breast cancer cells, SKBr3 and MCF-7 respectively displayed less dependency on matrix stiffness.
Biosensors and Bioelectronics | 2015
Zhengtuo Zhao; Mohammad Ali Al-Ameen; Kai Duan; Gargi Ghosh; Joe F. Lo
Advances in medical diagnostics and personalized therapy require sensitive and rapid measurement of minute amounts of proteins from patients. Standard ELISA is difficult to prepare and involves lengthy protocols. Here we report a novel method using capture antibody immobilized porous poly (ethylene) glycol diacrylate (PEGDA) hydrogel microspheres to enable high sensitivity VEGF detection in arrayed microfluidics. Our technique incorporates antibody encapsulation, trapping, and flow perfusion on a single device. We showed that the convergence of tunable porous hydrogel with efficient microfluidics improved the sensitivity of the assay. The detection limit of this microfluidic porous microgel based assay was 0.9 pg/mL, with only 1+ hour of assay time, demonstrating a novel assay that exceeded conventional technologies in terms of sensitivity and speed.
Annals of Biomedical Engineering | 2015
Yang Wu; Bingxin Guo; Gargi Ghosh
Solid cancers induce the formation of new blood vessels to promote growth and metastasis. Unlike the normal vascular networks, the tumor induced vasculatures exhibit abnormal shape and function. Past efforts have been focused on characterizing the altered growth factor signaling pathway in tumor capillary endothelial cells; however, the mechanical microenvironment of tumor also plays a significant role in regulating the formation of vascular patterns. Here, we used synthetic hydrogel based cell culture platforms to probe how activation of human umbilical endothelial cells (HUVECs) by tumor secreted factors alters the responses to matrix modulus and in turn the capillary network formation and drug sensitivity. Our study revealed that while in absence of activation, HUVECs prefer a substrate of appropriate stiffness for optimal capillary network formation; stimulation by tumor cells disrupts the mechano-responsive behavior of HUVECs. Additionally, the effect of vandetanib on reducing the capillary network was also investigated. The response of HUVECs to the anti-angiogenic agent was substrate modulus dependent displaying increased sensitivity on the compliant gels. Stimulation by tumor cells reduced the responsiveness to vandetanib, particularly when plated on stiffer gels.
Small | 2017
Kai Duan; Gargi Ghosh; Joe F. Lo
Sensitive, single volume detections of multiple diabetes antibodies can provide immunoprofiling and early screening of at-risk patients. To advance the state-of-the-art suspension assays for diabetes antibodies, porous hydrogel droplets are leveraged in microfluidic serpentine arrays to enhance reagent transport. This spatially multiplexed assay is applied to the detection of antibodies against insulin, glutamic acid decarboxylase, and insulinoma-associated protein 2. Optimization of assay protocol results in a shortened assay time of 2 h, with better than 20 pg mL Supporting Information detection limits across all three antibodies. Specificity and cross-reactivity tests show negligible background, nonspecific antibody-antigen, and nonspecific antibody-antibody bindings. Multiplexed detections are able to measure within 15% of target concentrations from low to high ranges. The technique enables quantifications of as little as 8000 molecules in each 500 µm droplet in a single volume, multiplexed assay format, a breakthrough necessary for the adoption of diabetes panels for clinical screening and monitoring in the future.
Materials Science and Engineering: C | 2017
Hichem El-Mohri; Yang Wu; Swetaparna Mohanty; Gargi Ghosh
Chronic non-healing wounds, caused by impaired production of growth factors and reduced vascularization, represent a significant burden to patients, health care professionals, and health care system. While several wound dressing biomaterials have been developed, the impact of the mechanical properties of the dressings on the residing cells and consequently on the healing of the wounds is largely overlooked. The primary focus of this study is to explore whether manipulation of the substrate mechanics can regulate the function of fibroblasts, particularly in the context of their angiogenic activity. A photocrosslinkable hydrogel platform with orthogonal control over gel modulus and cell adhesive sites was developed to explore the quantitative relationship between ECM compliance and fibroblast function. Increase in matrix stiffness resulted in enhanced fibroblast proliferation and stress fiber formation. However, the angiogenic activity of fibroblasts was found to be optimum when the cells were seeded on compliant matrices. Thus, the observations suggest that the stiffness of the wound dressing material may play an important role in the progression of wound healing.
Annals of Biomedical Engineering | 2014
Yang Wu; Mohammad Ali Al-Ameen; Gargi Ghosh