Joe F. Lo
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joe F. Lo.
Lab on a Chip | 2010
Joe F. Lo; Elly Sinkala; David T. Eddington
Controlling oxygen concentration at a microscale level can benefit experimental investigations involving oxidative stress, ischemia, and reactive oxygen species (ROS) mediated cellular pathways. Here, we report the application of microfluidic gradient generation in an open-well culture model, in which a gradient of gas is delivered via diffusion through a gas permeable substrate that separates cells from the gas microchannels below. By using diffusion to localize oxygen delivery, microgradients of oxygen concentrations can be rapidly and controllably applied without exposing cells to mechanical stresses or reducing culture volumes inside microfluidic culture chambers. Furthermore, we demonstrate the modulation of intracellular ROS levels in Madin-Darby Canine Kidney (MDCK) cells by applying these oxygen microgradients. Increases in ROS levels consistent with both oxidative stress and hypoxic exposures were observed in MDCK cells. The measured ROS increases were comparable to 100 microM hydrogen peroxide exposure in a control comparison, which is within the range of standard ROS induction methods. Incubation with 200 microM vitamin C was able to demodulate the ROS response at both hypoxic and hyperoxic exposures. By providing microfluidic controlled gradients, constant ROS exposure, and a shear-free open well design, the devices introduced here greatly improve upon standard oxygen-based culturing methods.
Analytical Chemistry | 2012
Joe F. Lo; Yong Wang; Alexander Blake; Gene Yu; Tricia A. Harvat; Hyojin Jeon; Jose Oberholzer; David T. Eddington
Simultaneous stimulation of ex vivo pancreatic islets with dynamic oxygen and glucose is a critical technique for studying how hypoxia alters glucose-stimulated response, especially in transplant environments. Standard techniques using a hypoxic chamber cannot provide both oxygen and glucose modulations, while monitoring stimulus-secretion coupling factors in real-time. Using novel microfluidic device with integrated glucose and oxygen modulations, we quantified hypoxic impairment of islet response by calcium influx, mitochondrial potentials, and insulin secretion. Glucose-induced calcium response magnitude and phase were suppressed by hypoxia, while mitochondrial hyperpolarization and insulin secretion decreased in coordination. More importantly, hypoxic response was improved by preconditioning islets to intermittent hypoxia (IH, 1 min/1 min 5-21% cycling for 1 h), translating to improved insulin secretion. Moreover, blocking mitochondrial K(ATP) channels removed preconditioning benefits of IH, similar to mechanisms in preconditioned cardiomyocytes. Additionally, the multimodal device can be applied to a variety of dynamic oxygen-metabolic studies in other ex vivo tissues.
Analytical Chemistry | 2013
Mohammad Nourmohammadzadeh; Joe F. Lo; Matthew A. Bochenek; Joshua E. Mendoza-Elias; Qian Wang; Ze Li; Liyi Zeng; Merigeng Qi; David T. Eddington; Jose Oberholzer; Yong Wang
In this article, we present a novel microfluidic islet array based on a hydrodynamic trapping principle. The lab-on-a-chip studies with live-cell multiparametric imaging allow understanding of physiological and pathophysiological changes of microencapsulated islets under hypoxic conditions. Using this microfluidic array and imaging analysis techniques, we demonstrate that hypoxia impairs the function of microencapsulated islets at the single islet level, showing a heterogeneous pattern reflected in intracellular calcium signaling, mitochondrial energetic, and redox activity. Our approach demonstrates an improvement over conventional hypoxia chambers that is able to rapidly equilibrate to true hypoxia levels through the integration of dynamic oxygenation. This work demonstrates the feasibility of array-based cellular analysis and opens up new modality to conduct informative analysis and cell-based screening for microencapsulated pancreatic islets.
Wound Repair and Regeneration | 2013
Joe F. Lo; Martin J. Brennan; Zameer Merchant; Lin Chen; Shujuan Guo; David T. Eddington; Luisa A. DiPietro
Restoring tissue oxygenation has the potential to improve poorly healing wounds with impaired microvasculature. Compared with more established wound therapy using hyperbaric oxygen chambers, topical oxygen therapy has lower cost and better patient comfort, although topical devices have provided inconsistent results. To provide controlled topical oxygen while minimizing moisture loss, a major issue for topical oxygen, we have devised a novel wound bandage based on microfluidic diffusion delivery of oxygen. In addition to modulating oxygen from 0 to 100% in 60 seconds rise time, the microfluidic oxygen bandage provides a conformal seal around the wound. When 100% oxygen is delivered, it penetrates wound tissues as measured in agar phantom and in vivo wounds. Using this microfluidic bandage, we applied the oxygen modulation to 8 mm excisional wounds prepared on diabetic mice. Treatment with the microfluidic bandage demonstrated improved collagen maturity in the wound bed, although only marginal differences were observed in total collagen, microvasculature, and external closure rates. Our results show that proper topical oxygen can improve wound parameters underneath the surface. Because of the ease of fabrication, the oxygen bandage represents an economical yet practical method for oxygen wound research.
Bioanalysis | 2010
Yong Wang; Joe F. Lo; Joshua E. Mendoza-Elias; Adeola F. Adewola; Tricia A. Harvat; Katie Kinzer; Dongyoung Lee; Meirigeng Qi; David T. Eddington; Jose Oberholzer
β-cells respond to blood glucose by secreting insulin to maintain glucose homeostasis. Perifusion enables manipulation of biological and chemical cues in elucidating the mechanisms of β-cell physiology. Recently, microfluidic devices made of polydimethylsiloxane and Borofloat glass have been developed as miniaturized perifusion setups and demonstrated distinct advantages over conventional techniques in resolving rapid secretory and metabolic waveforms intrinsic to β-cells. In order to enhance sensing and monitoring capabilities, these devices have been integrated with analytical tools to increase assay throughput. The spatio-temporal resolutions of these analyses have been improved through enhanced flow control, valves and compartmentalization. For the first time, this review provides an overview of current devices used in islet studies and analyzes their strengths and experimental suitability. To realize the potential of microfluidic islet applications, it is essential to bridge the gap in design and application between engineers and biologists through the creation of standardized bioassays and user-friendly interfaces.
Biosensors and Bioelectronics | 2015
Zhengtuo Zhao; Mohammad Ali Al-Ameen; Kai Duan; Gargi Ghosh; Joe F. Lo
Advances in medical diagnostics and personalized therapy require sensitive and rapid measurement of minute amounts of proteins from patients. Standard ELISA is difficult to prepare and involves lengthy protocols. Here we report a novel method using capture antibody immobilized porous poly (ethylene) glycol diacrylate (PEGDA) hydrogel microspheres to enable high sensitivity VEGF detection in arrayed microfluidics. Our technique incorporates antibody encapsulation, trapping, and flow perfusion on a single device. We showed that the convergence of tunable porous hydrogel with efficient microfluidics improved the sensitivity of the assay. The detection limit of this microfluidic porous microgel based assay was 0.9 pg/mL, with only 1+ hour of assay time, demonstrating a novel assay that exceeded conventional technologies in terms of sensitivity and speed.
Journal of Neuroscience Methods | 2013
Gerardo Mauleon; Joe F. Lo; Bethany L. Peterson; Christopher P. Fall; David T. Eddington
A microfluidic oxygenator is used to deliver constant oxygen to rodent brain slices, enabling the loading of the cell-permeant calcium indicator Fura-2/AM into cells of adult brain slices. When compared to traditional methods, our microfluidic oxygenator improves loading efficiency, measured by the number of loaded cells per unit area, for all tested age groups. Loading in slices from 1-year-old mice was achieved, which has not been possible with current bulk loading methods. This technique significantly expands the age range for which calcium studies are possible without cellular injection. This technique will facilitate opportunities for the study of calcium signaling of aging and long term stress related diseases. Moreover, it should be applicable to other membrane-permeant physiological indicator varieties.
Journal of Visualized Experiments | 2013
Joe F. Lo; Yong Wang; Zidong Li; Zhengtuo Zhao; Di Hu; David T. Eddington; Jose Oberholzer
Simultaneous oxygenation and monitoring of glucose stimulus-secretion coupling factors in a single technique is critical for modeling pathophysiological states of islet hypoxia, especially in transplant environments. Standard hypoxic chamber techniques cannot modulate both stimulations at the same time nor provide real-time monitoring of glucose stimulus-secretion coupling factors. To address these difficulties, we applied a multilayered microfluidic technique to integrate both aqueous and gas phase modulations via a diffusion membrane. This creates a stimulation sandwich around the microscaled islets within the transparent polydimethylsiloxane (PDMS) device, enabling monitoring of the aforementioned coupling factors via fluorescence microscopy. Additionally, the gas input is controlled by a pair of microdispensers, providing quantitative, sub-minute modulations of oxygen between 0-21%. This intermittent hypoxia is applied to investigate a new phenomenon of islet preconditioning. Moreover, armed with multimodal microscopy, we were able to look at detailed calcium and KATP channel dynamics during these hypoxic events. We envision microfluidic hypoxia, especially this simultaneous dual phase technique, as a valuable tool in studying islets as well as many ex vivo tissues.
Small | 2017
Kai Duan; Gargi Ghosh; Joe F. Lo
Sensitive, single volume detections of multiple diabetes antibodies can provide immunoprofiling and early screening of at-risk patients. To advance the state-of-the-art suspension assays for diabetes antibodies, porous hydrogel droplets are leveraged in microfluidic serpentine arrays to enhance reagent transport. This spatially multiplexed assay is applied to the detection of antibodies against insulin, glutamic acid decarboxylase, and insulinoma-associated protein 2. Optimization of assay protocol results in a shortened assay time of 2 h, with better than 20 pg mL Supporting Information detection limits across all three antibodies. Specificity and cross-reactivity tests show negligible background, nonspecific antibody-antigen, and nonspecific antibody-antibody bindings. Multiplexed detections are able to measure within 15% of target concentrations from low to high ranges. The technique enables quantifications of as little as 8000 molecules in each 500 µm droplet in a single volume, multiplexed assay format, a breakthrough necessary for the adoption of diabetes panels for clinical screening and monitoring in the future.
Proceedings of SPIE | 2016
Luwei Zou; Mohamad Mahmoud; Mehdi Fahs; Rui Liu; Joe F. Lo
Various types of collagens, e.g. type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes like wound healing and fibrosis. Collagens exhibit autofluorescence when excited by ultra-violet light, distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Therefore, we designed a miniaturized spectral-lifetime detection system for collagens as a non-invasive probe for monitoring tissue in wound healing and scarring applications. A sine modulated LED illumination was applied to enable frequency domain (FD) fluorescence lifetime measurements under different wavelengths bands, separated via a series of longpass dichroics at 387nm, 409nm and 435nm. To achieve the minute scale of optomechanics, we employed a stereolithography based 3D printer with <50 μm resolution to create a custom designed optical mount in a hand-held form factor. We examined the characteristics of the 3D printed optical system with finite element modeling to simulate the effect of thermal (LED) and mechanical (handling) strain on the optical system. Using this device, the phase shift and demodulation of collagen types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes.