Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Garrett Heinrich is active.

Publication


Featured researches published by Garrett Heinrich.


Molecular Endocrinology | 2010

Discovery of Glucocorticoid Receptor-β in Mice with a Role in Metabolism

Terry D. Hinds; Sadeesh K. Ramakrishnan; Harrison A. Cash; Lance A. Stechschulte; Garrett Heinrich; Sonia M. Najjar; Edwin R. Sanchez

Glucocorticoid hormones control diverse physiological processes, including metabolism and immunity, by activating the major glucocorticoid receptor (GR) isoform, GRalpha. However, humans express an alternative isoform, human (h)GRbeta, that acts as an inhibitor of hGRalpha to produce a state of glucocorticoid resistance. Indeed, evidence exists that hGRbeta contributes to many diseases and resistance to glucocorticoid hormone therapy. However, rigorous testing of the GRbeta contribution has not been possible, because rodents, especially mice, are not thought to express the beta-isoform. Here, we report expression of GRbeta mRNA and protein in the mouse. The mGRbeta isoform arises from a distinct alternative splicing mechanism utilizing intron 8, rather than exon 9 as in humans. The splicing event produces a form of beta that is similar in structure and functionality to hGRbeta. Mouse (m)GRbeta has a degenerate C-terminal region that is the same size as hGRbeta. Using a variety of newly developed tools, such as a mGRbeta-specific antibody and constructs for overexpression and short hairpin RNA knockdown, we demonstrate that mGRbeta cannot bind dexamethasone agonist, is inhibitory of mGRalpha, and is up-regulated by inflammatory signals. These properties are the same as reported for hGRbeta. Additionally, novel data is presented that mGRbeta is involved in metabolism. When murine tissue culture cells are treated with insulin, no effect on mGRalpha expression was observed, but GRbeta was elevated. In mice subjected to fasting-refeeding, a large increase of GRbeta was seen in the liver, whereas mGRalpha was unchanged. This work uncovers the much-needed rodent model of GRbeta for investigations of physiology and disease.


Diabetes | 2008

Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1: A Link Between Insulin and Lipid Metabolism

Anthony M. DeAngelis; Garrett Heinrich; Tong Dai; Thomas A. Bowman; Payal R. Patel; Sang Jun Lee; Eun-Gyoung Hong; Dae Young Jung; Anke Assmann; Rohit N. Kulkarni; Jason K. Kim; Sonia M. Najjar

OBJECTIVE—Liver-specific inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) by a dominant-negative transgene (l-SACC1 mice) impaired insulin clearance, caused insulin resistance, and increased hepatic lipogenesis. To discern whether this phenotype reflects a physiological function of CEACAM1 rather than the effect of the dominant-negative transgene, we characterized the metabolic phenotype of mice with null mutation of the Ceacam1 gene (Cc1−/−). RESEARCH DESIGN AND METHODS—Mice were originally generated on a mixed C57BL/6x129sv genetic background and then backcrossed 12 times onto the C57BL/6 background. More than 70 male mice of each of the Cc1−/− and wild-type Cc1+/+ groups were subjected to metabolic analyses, including insulin tolerance, hyperinsulinemic-euglycemic clamp studies, insulin secretion in response to glucose, and determination of fasting serum insulin, C-peptide, triglyceride, and free fatty acid levels. RESULTS—Like l-SACC1, Cc1−/− mice exhibited impairment of insulin clearance and hyperinsulinemia, which caused insulin resistance beginning at 2 months of age, when the mutation was maintained on a mixed C57BL/6x129sv background, but not until 5–6 months of age on a homogeneous inbred C57BL/6 genetic background. Hyperinsulinemic-euglycemic clamp studies revealed that the inbred Cc1−/− mice developed insulin resistance primarily in liver. Despite substantial expression of CEACAM1 in pancreatic β-cells, insulin secretion in response to glucose in vivo and in isolated islets was normal in Cc1−/− mice (inbred and outbred strains). CONCLUSIONS—Intact insulin secretion in response to glucose and impairment of insulin clearance in l-SACC1 and Cc1−/− mice suggest that the principal role of CEACAM1 in insulin action is to mediate insulin clearance in liver.


Physiological Genomics | 2008

Aerobic capacity-dependent differences in cardiac gene expression

Anja Bye; Mette Langaas; Morten Høydal; Ole Johan Kemi; Garrett Heinrich; Lauren G. Koch; Steven L. Britton; Sonia M. Najjar; Øyvind Ellingsen; Ulrik Wisløff

Aerobic capacity is a strong predictor of cardiovascular mortality. To determine the relationship between inborn aerobic capacity and cardiac gene expression we examined genome-wide gene expression in hearts of rats artificially selected for high and low running capacity (HCR and LCR, respectively) over 16 generations. The artificial selection of LCR caused accumulation of risk factors of cardiovascular disease similar to the metabolic syndrome seen in human, whereas HCR had markedly better cardiac function. We also studied alterations in gene expression in response to exercise training in these animals. Left ventricle gene expression of both sedentary and exercise-trained HCR and LCR was characterized by microarray and gene ontology analysis. Out of 28,000 screened genes, 1,540 were differentially expressed between sedentary HCR and LCR. Only one gene was found differentially expressed by exercise training, but this gene had unknown name and function. Sedentary HCR expressed higher amounts of genes involved in lipid metabolism, whereas sedentary LCR expressed higher amounts of the genes involved in glucose metabolism. This suggests a switch in cardiac energy substrate utilization from normal mitochondrial fatty acid beta-oxidation in HCR to carbohydrate metabolism in LCR, an event that often occurs in diseased hearts. LCR were also associated with pathological growth signaling and cellular stress. Hypoxic conditions seemed to be a common source for several of these observations, triggering hypoxia-induced alterations of transcription. In conclusion, inborn high vs. low aerobic capacity was associated with differences in cardiac energy substrate, growth signaling, and cellular stress.


Gastroenterology | 2008

Development of nonalcoholic steatohepatitis in insulin-resistant liver-specific S503A carcinoembryonic antigen-related cell adhesion molecule 1 mutant mice.

Sang Jun Lee; Garrett Heinrich; Larisa Fedorova; Qusai Y. Al-Share; Kelly J. Ledford; Mats A. Fernström; Marcia F. McInerney; Sandra K. Erickson; Cara Gatto-Weis; Sonia M. Najjar

BACKGROUND & AIMS Liver-specific inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 causes hyperinsulinemia and insulin resistance, which result from impaired insulin clearance, in liver-specific S503A carcinoembryonic antigen-related cell adhesion molecule 1 mutant mice (L-SACC1). These mice also develop steatosis. Because hepatic fat accumulation precedes hepatitis, lipid peroxidation, and apoptosis in the pathogenesis of nonalcoholic steatohepatitis (NASH), we investigated whether a high-fat diet, by causing inflammation, is sufficient to induce hepatitis and other features of NASH in L-SACC1 mice. METHODS L-SACC1 and wild-type mice were placed on a high-fat diet for 3 months, then several biochemical and histologic analyses were performed to investigate the NASH phenotype. RESULTS A high-fat diet caused hepatic macrosteatosis and hepatitis, characterized by increased hepatic tumor necrosis factor alpha levels and activation of the NF-kappaB pathway in L-SACC1 but not in wild-type mice. The high-fat diet also induced necrosis and apoptosis in the livers of the L-SACC1 mice. Insulin resistance in L-SACC1 fed a high-fat diet increased the hepatic procollagen protein level, suggesting a role in the development of fibrosis. CONCLUSIONS A high-fat diet induces key features of human NASH in insulin-resistant L-SACC1 mice, validating this model as a tool to study the molecular mechanisms of NASH.


Diabetes | 2015

Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance

Qusai Y. Al-Share; Anthony M. DeAngelis; Sumona Ghosh Lester; Thomas A. Bowman; Sadeesh K. Ramakrishnan; Simon L. Abdallah; Lucia Russo; Payal R. Patel; Meenakshi Kaw; Christian K. Raphael; Andrea Jung Kim; Garrett Heinrich; Abraham D. Lee; Jason K. Kim; Rohit N. Kulkarni; William M. Philbrick; Sonia M. Najjar

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) regulates insulin sensitivity by promoting hepatic insulin clearance. Liver-specific inactivation or global null-mutation of Ceacam1 impairs hepatic insulin extraction to cause chronic hyperinsulinemia, resulting in insulin resistance and visceral obesity. In this study we investigated whether diet-induced insulin resistance implicates changes in hepatic CEACAM1. We report that feeding C57/BL6J mice a high-fat diet reduced hepatic CEACAM1 levels by >50% beginning at 21 days, causing hyperinsulinemia, insulin resistance, and elevation in hepatic triacylglycerol content. Conversely, liver-specific inducible CEACAM1 expression prevented hyperinsulinemia and markedly limited insulin resistance and hepatic lipid accumulation that were induced by prolonged high-fat intake. This was partly mediated by increased hepatic β-fatty acid oxidation and energy expenditure. The data demonstrate that the high-fat diet reduced hepatic CEACAM1 expression and that overexpressing CEACAM1 in liver curtailed diet-induced metabolic abnormalities by protecting hepatic insulin clearance.


Gastroenterology | 2010

Carcinoembryonic Antigen-Related Cell Adhesion Molecule 2 Controls Energy Balance and Peripheral Insulin Action in Mice

Garrett Heinrich; Sumona Ghosh; Anthony M. DeAngelis; Jill M. Schroeder-Gloeckler; Payal R. Patel; Tamara R. Castañeda; Shane Jeffers; Abraham D. Lee; Dae Young Jung; Zhiyou Zhang; Darren M. Opland; Martin G. Myers; Jason K. Kim; Sonia M. Najjar

BACKGROUND & AIMS The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a transmembrane glycoprotein with pleotropic functions, including clearance of hepatic insulin. We investigated the functions of the related protein CEACAM2, which has tissue-specific distribution (kidney, uterus, and crypt epithelia of intestinal tissues), in genetically modified mice. METHODS Ceacam2-null mice (Cc2-/-) were generated from a 129/SvxC57BL/6J background. Female mice were assessed by hyperinsulinemic-euglycemic clamp analysis and indirect calorimetry and body fat composition was measured. Cc2-/- mice and controls were fed as pairs, given insulin tolerance tests, and phenotypically characterized. RESULTS Female, but not male Cc2-/- mice exhibited obesity that resulted from hyperphagia and reduced energy expenditure. Pair feeding experiments showed that hyperphagia led to peripheral insulin resistance. Insulin action was normal in liver but compromised in skeletal muscle of female Cc2-/- mice; the mice had incomplete fatty acid oxidation and impaired glucose uptake and disposal. The mechanism of hyperphagia in Cc2-/- mice is not clear, but appears to result partly from increased hyperinsulinemia-induced hypothalamic fatty acid synthase levels and activity. Hyperinsulinemia was caused by increased insulin secretion. CONCLUSIONS In mice, CEACAM2 is expressed by the hypothalamus. Cc2-/- mice develop obesity from hyperphagia and reduced energy expenditure, indicating its role in regulating energy balance and insulin sensitivity.


Inhalation Toxicology | 2008

Carbon Monoxide Levels Experienced by Heavy Smokers Impair Aerobic Capacity and Cardiac Contractility and Induce Pathological Hypertrophy

Anja Bye; Sveinung Sørhaug; Marcello Ceci; Morten Høydal; Tomas Stølen; Garrett Heinrich; Arnt E. Tjønna; Sonia M. Najjar; Odd G. Nilsen; Daniele Catalucci; Serena Grimaldi; Riccardo Contu; Sigurd Steinshamn; Gianluigi Condorelli; Godfrey L. Smith; Øyvind Ellingsen; Helge L. Waldum; Ulrik Wisløff

Cigarette smoke contains hundreds of potentially toxic compounds and is an important risk factor for cardiovascular disease. However, the key components responsible for endothelial and myocardial dysfunction have not been fully identified. The objective of the present study was to determine the cardiovascular effects of long-term inhalation of carbon monoxide (CO) administrated to give concentrations in the blood similar to those observed in heavy smokers. Female rats were exposed to either CO or air (control group) (n = 12). The CO group was exposed to 200 ppm CO (100 h/wk) for 18 mo. Rats exposed to CO had 24% lower maximal oxygen uptake, longer (145 vs. 123 μ m) and wider (47 vs. 25 μ m) cardiomyocytes, reduced cardiomyocyte fractional shortening (12 vs. 7%), and 26% longer time to 50% re-lengthening than controls. In addition, cardiomyocytes from CO-exposed rats had 48% lower intracellular calcium (Ca2 +) amplitude, 22% longer time to Ca2 + decay, 34% lower capacity of sarcoplasmic reticulum Ca2 +-ATPase (SERCA2a), and 37% less t-tubule area compared to controls. Phosphorylation levels of phospholamban at Ser16 and Thr17 were significantly reduced in the CO group, whereas total concentration of phospholamban and SERCA2a were unchanged. Cardiac atrial natriuretic peptide, vascular endothelial growth factor, cyclic guanosine monophosphate, calcineurin, calmodulin, pERK, and pS6 increased, whereas pAkt and pCaMKII δ remained unchanged by CO. Endothelial function and systemic blood pressure were not affected by CO exposure. Long-term CO exposure reduces aerobe capacity and contractile function and leads to pathological hypertrophy. Impaired Ca2 + handling and increased growth factor signaling seem to be responsible for these pathological changes.


American Journal of Physiology-endocrinology and Metabolism | 2013

Ceacam1 deletion causes vascular alterations in large vessels

Sonia M. Najjar; Kelly J. Ledford; Simon L. Abdallah; Alexander Paus; Lucia Russo; Meenakshi Kaw; Sadeesh K. Ramakrishnan; Harrison T. Muturi; Christian K. Raphael; Sumona Ghosh Lester; Garrett Heinrich; Sandrine V. Pierre; Ralf A. Benndorf; Veronika Kleff; Ayad A. Jaffa; Emile Levy; Guillermo Vazquez; Ira J. Goldberg; Nicole Beauchemin; Rosario Scalia; Süleyman Ergün

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance and endothelial survival. However, its role in the morphology of macrovessels remains unknown. Mice lacking Ceacam1 (Cc1-/-) exhibit hyperinsulinemia, which causes insulin resistance and fatty liver. With increasing evidence of an association among hyperinsulinemia, fatty liver disease, and atherosclerosis, we investigated whether Cc1-/- exhibited vascular lesions in atherogenic-prone aortae. Histological analysis revealed impaired endothelial integrity with restricted fat deposition and aortic plaque-like lesions in Cc1-/- aortae, likely owing to their limited lipidemia. Immunohistochemical analysis indicated macrophage deposition, and in vitro studies showed increased leukocyte adhesion to aortic wall, mediated in part by elevation in vascular cell adhesion molecule 1 levels. Basal aortic eNOS protein and NO content were reduced, in parallel with reduced Akt/eNOS and Akt/Foxo1 phosphorylation. Ligand-induced vasorelaxation was compromised in aortic rings. Increased NADPH oxidase activity and plasma 8-isoprostane levels revealed oxidative stress and lipid peroxidation in Cc1-/- aortae. siRNA-mediated CEACAM1 knockdown in bovine aortic endothelial cells adversely affected insulins stimulation of IRS-1/PI 3-kinase/Akt/eNOS activation by increasing IRS-1 binding to SHP2 phosphatase. This demonstrates that CEACAM1 regulates both endothelial cell autonomous and nonautonomous mechanisms involved in vascular morphology and NO production in aortae. Systemic factors such as hyperinsulinemia could contribute to the pathogenesis of these vascular abnormalities. Cc1-/- mice provide a first in vivo demonstration of distinct CEACAM1-dependent hepatic insulin clearance linking hepatic to macrovascular abnormalities.


Journal of Biological Chemistry | 2016

PPARα (Peroxisome Proliferator-activated Receptor α) Activation Reduces Hepatic CEACAM1 Protein Expression to Regulate Fatty Acid Oxidation during Fasting-refeeding Transition.

Sadeesh K. Ramakrishnan; Saja S. Khuder; Qusai Y. Al-Share; Lucia Russo; Simon L. Abdallah; Payal R. Patel; Garrett Heinrich; Harrison T. Muturi; Brahma R. Mopidevi; Ana Maria Oyarce; Yatrik M. Shah; Edwin R. Sanchez; Sonia M. Najjar

Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed at high levels in the hepatocyte, consistent with its role in promoting insulin clearance in liver. CEACAM1 also mediates a negative acute effect of insulin on fatty acid synthase activity. Western blot analysis reveals lower hepatic CEACAM1 expression during fasting. Treating of rat hepatoma FAO cells with Wy14,643, an agonist of peroxisome proliferator-activated receptor α (PPARα), rapidly reduces Ceacam1 mRNA and CEACAM1 protein levels within 1 and 2 h, respectively. Luciferase reporter assay shows a decrease in the promoter activity of both rat and mouse genes by Pparα activation, and 5′-deletion and block substitution analyses reveal that the Pparα response element between nucleotides −557 and −543 is required for regulation of the mouse promoter activity. Chromatin immunoprecipitation analysis demonstrates binding of liganded Pparα to Ceacam1 promoter in liver lysates of Pparα+/+, but not Pparα−/− mice fed a Wy14,643-supplemented chow diet. Consequently, Wy14,643 feeding reduces hepatic Ceacam1 mRNA and CEACAM1 protein levels, thus decreasing insulin clearance to compensate for compromised insulin secretion and maintain glucose homeostasis and insulin sensitivity in wild-type mice. Together, the data show that the low hepatic CEACAM1 expression at fasting is mediated by Pparα-dependent mechanisms. Changes in CEACAM1 expression contribute to the coordination of fatty acid oxidation and insulin action in the fasting-refeeding transition.


Diabetologia | 2012

Increased metabolic rate and insulin sensitivity in male mice lacking the carcino-embryonic antigen-related cell adhesion molecule 2

Payal R. Patel; Sadeesh K. Ramakrishnan; Meenakshi Kaw; C. K. Raphael; Sumona Ghosh; J. S. Marino; Garrett Heinrich; Sang Jun Lee; R. E. Bourey; J. W. Hill; D. Y. Jung; D. A. Morgan; Jason K. Kim; S. K. Rahmouni; Sonia M. Najjar

Aims/hypothesisThe carcino-embryonic antigen-related cell adhesion molecule (CEACAM)2 is produced in many feeding control centres in the brain, but not in peripheral insulin-targeted tissues. Global Ceacam2 null mutation causes insulin resistance and obesity resulting from hyperphagia and hypometabolism in female Ceacam2 homozygous null mutant mice (Cc2 [also known as Ceacam2]−/−) mice. Because male mice are not obese, the current study examined their metabolic phenotype.MethodsThe phenotype of male Cc2−/− mice was characterised by body fat composition, indirect calorimetry, hyperinsulinaemic–euglycaemic clamp analysis and direct recording of sympathetic nerve activity.ResultsDespite hyperphagia, total fat mass was reduced, owing to the hypermetabolic state in male Cc2−/− mice. In contrast to females, male mice also exhibited insulin sensitivity with elevated β-oxidation in skeletal muscle, which is likely to offset the effects of increased food intake. Males and females had increased brown adipogenesis. However, only males had increased activation of sympathetic tone regulation of adipose tissue and increased spontaneous activity. The mechanisms underlying sexual dimorphism in energy balance with the loss of Ceacam2 remain unknown.Conclusions/interpretationThese studies identified a novel role for CEACAM2 in the regulation of metabolic rate and insulin sensitivity via effects on brown adipogenesis, sympathetic nervous outflow to brown adipose tissue, spontaneous activity and energy expenditure in skeletal muscle.

Collaboration


Dive into the Garrett Heinrich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason K. Kim

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge