Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Garrett R. Ainslie is active.

Publication


Featured researches published by Garrett R. Ainslie.


Journal of Pharmacology and Experimental Therapeutics | 2015

Mechanistic Basis of Altered Morphine Disposition in Nonalcoholic Steatohepatitis

Anika L. Dzierlenga; John D. Clarke; Tiffanie L. Hargraves; Garrett R. Ainslie; Todd W. Vanderah; Mary F. Paine; Nathan J. Cherrington

Morphine is metabolized in humans to morphine-3-glucuronide (M3G) and the pharmacologically active morphine-6-glucuronide (M6G). The hepatobiliary disposition of both metabolites relies upon multidrug resistance-associated proteins Mrp3 and Mrp2, located on the sinusoidal and canalicular membrane, respectively. Nonalcoholic steatohepatitis (NASH), the severe stage of nonalcoholic fatty liver disease, alters xenobiotic metabolizing enzyme and transporter function. The purpose of this study was to determine whether NASH contributes to the large interindividual variability and postoperative adverse events associated with morphine therapy. Male Sprague-Dawley rats were fed a control diet or a methionine- and choline-deficient diet to induce NASH. Radiolabeled morphine (2.5 mg/kg, 30 µCi/kg) was administered intravenously, and plasma and bile (0–150 or 0–240 minutes), liver and kidney, and cumulative urine were analyzed for morphine and M3G. The antinociceptive response to M6G (5 mg/kg) was assessed (0–12 hours) after direct intraperitoneal administration since rats do not produce M6G. NASH caused a net decrease in morphine concentrations in the bile and plasma and a net increase in the M3G/morphine plasma area under the concentration-time curve ratio, consistent with upregulation of UDP-glucuronosyltransferase Ugt2b1. Despite increased systemic exposure to M3G, NASH resulted in decreased biliary excretion and hepatic accumulation of M3G. This shift toward systemic retention is consistent with the mislocalization of canalicular Mrp2 and increased expression of sinusoidal Mrp3 in NASH and may correlate to increased antinociception by M6G. Increased metabolism and altered transporter regulation in NASH provide a mechanistic basis for interindividual variability in morphine disposition that may lead to opioid-related toxicity.


Annals of clinical and translational neurology | 2015

Torin 1 partially corrects vigabatrin-induced mitochondrial increase in mouse

Kara R. Vogel; Garrett R. Ainslie; Erwin E.W. Jansen; Gajja S. Salomons; K.M. Gibson

Recent findings in mice with targeted deletion of the GABA‐metabolic enzyme succinic semialdehyde dehydrogenase revealed a new role for supraphysiological GABA (4‐aminobutyric acid) in the activation of the mechanistic target of rapamycin (mTOR) that results in disruption of endogenous mitophagy. Employing biochemical and electron microscopic methodology, we examined the hypothesis that similar outcomes would be observed during intervention with vigabatrin, whose antiepileptic capacity hinges on central nervous system GABA elevation. Vigabatrin intervention was associated with significantly enhanced mitochondrial numbers and areas in normal mice that could be selectively normalized with the rapalog and mechanistic target of rapamycin inhibitor, Torin 1. Moreover, short‐term administration of vigabatrin induced apoptosis and enhanced phosphorylation of mechanistic target of rapamycin Ser 2448 in liver. Our results provide new insight into adverse outcomes associated with vigabatrin intervention, and the first evidence that its administration is associated with increased mitochondrial number in central and peripheral tissues that may associate with mechanistic target of rapamycin function and enhanced cell death.


Pharmacology Research & Perspectives | 2016

A pharmacokinetic evaluation and metabolite identification of the GHB receptor antagonist NCS-382 in mouse informs novel therapeutic strategies for the treatment of GHB intoxication

Garrett R. Ainslie; K. Michael Gibson; Kara R. Vogel

Gamma‐aminobutyric acid (GABA) is an endogenous inhibitory neurotransmitter and precursor of gamma‐hydroxybutyric acid (GHB). NCS‐382 (6,7,8,9‐tetrahydro‐5‐hydroxy‐5H‐benzo‐cyclohept‐6‐ylideneacetic acid), a known GHB receptor antagonist, has shown significant efficacy in a murine model of succinic semialdehyde dehydrogenase deficiency (SSADHD), a heritable neurological disorder featuring chronic elevation of GHB that blocks the final step of GABA degradation. NCS‐382 exposures and elimination pathways remain unknown; therefore, the goal of the present work was to obtain in vivo pharmacokinetic data in a murine model and to identify the NCS‐382 metabolites formed by mouse and human. NCS‐382 single‐dose mouse pharmacokinetics were established following an intraperitoneal injection (100, 300, and 500 mg/kg body weight) and metabolite identification was conducted using HPLC‐MS/MS. Kinetic enzyme assays employed mouse and human liver microsomes. Upon gaining an understanding of the NCS‐382 clearance mechanisms, a chemical inhibitor was used to increase NCS‐382 brain exposure in a pharmacokinetic/pharmacodynamic study. Two major metabolic pathways of NCS‐382 were identified as dehydrogenation and glucuronidation. The Km for the dehydrogenation pathway was determined in mouse (Km = 29.5 ± 10.0 μmol/L) and human (Km = 12.7 ± 4.8 μmol/L) liver microsomes. Comparable parameters for glucuronidation were >100 μmol/L in both species. Inhibition of NCS‐382 glucuronidation, in vivo, by diclofenac resulted in increased NCS‐382 brain concentrations and protective effects in gamma‐butyrolactone‐treated mice. These initial evaluations of NCS‐382 pharmacokinetics and metabolism inform the development of NCS‐382 as a potential therapy for conditions of GHB elevation (including acute intoxication & SSADHD).


Drug Metabolism and Disposition | 2013

Compartmental and Enzyme Kinetic Modeling to Elucidate the Biotransformation Pathway of a Centrally-Acting Antitrypanosomal Prodrug

Claudia N. Generaux; Garrett R. Ainslie; Arlene S. Bridges; Mohamed A. Ismail; David W. Boykin; Richard R. Tidwell; Dhiren R. Thakker; Mary F. Paine

DB868 [2,5-bis [5-(N-methoxyamidino)-2-pyridyl] furan], a prodrug of the diamidine DB829 [2,5-bis(5-amidino-2-pyridyl) furan], has demonstrated efficacy in murine models of human African trypanosomiasis. A cross-species evaluation of prodrug bioconversion to the active drug is required to predict the disposition of prodrug, metabolites, and active drug in humans. The phase I biotransformation of DB868 was elucidated using liver microsomes and sandwich-cultured hepatocytes from humans and rats. All systems produced four NADPH-dependent metabolites via O-demethylation (M1, M2) and N-dehydroxylation (M3, M4). Compartmental kinetic modeling of the DB868 metabolic pathway suggested an unusual N-demethoxylation reaction that was supported experimentally. A unienzyme Michaelis-Menten model described the kinetics of M1 formation by human liver microsomes (HLMs) (Km, 11 μM; Vmax, 340 pmol/min/mg), whereas a two-enzyme model described the kinetics of M1 formation by rat liver microsomes (RLMs) (Km1, 0.5 μM; Vmax1, 12 pmol/min/mg; Km2, 27 μM; Vmax2, 70 pmol/min/mg). Human recombinant CYP1A2, CYP3A4, and CYP4F2, rat recombinant Cyp1a2 and Cyp2d2, and rat purified Cyp4f1 catalyzed M1 formation. M2 formation by HLMs exhibited allosteric kinetics (S50, 18 μM; Vmax, 180 pmol/mg), whereas M2 formation by RLMs was negligible. Recombinant CYP1A2/Cyp1a2 catalyzed M2 formation. DB829 was detected in trace amounts in HLMs at the end of the 180-min incubation and was detected readily in sandwich-cultured hepatocytes from both species throughout the 24-h incubation. These studies demonstrated that DB868 biotransformation to DB829 is conserved between humans and rats. An improved understanding of species differences in the kinetics of DB829 formation would facilitate preclinical development of a promising antitrypanosomal prodrug.


Biochimica et Biophysica Acta | 2017

Therapeutic relevance of mTOR inhibition in murine succinate semialdehyde dehydrogenase deficiency (SSADHD), a disorder of GABA metabolism

Kara R. Vogel; Garrett R. Ainslie; Erwin E.W. Jansen; Gajja S. Salomons; K.M. Gibson

Aldehyde dehydrogenase 5a1-deficient (aldh5a1-/-) mice, the murine orthologue of human succinic semialdehyde dehydrogenase deficiency (SSADHD), manifest increased GABA (4-aminobutyric acid) that disrupts autophagy, increases mitochondria number, and induces oxidative stress, all mitigated with the mTOR (mechanistic target of rapamycin) inhibitor rapamycin [1]. Because GABA regulates mTOR, we tested the hypothesis that aldh5a1-/- mice would show altered levels of mRNA for genes associated with mTOR signaling and oxidative stress that could be mitigated by inhibiting mTOR. We observed that multiple metabolites associated with GABA metabolism (γ-hydroxybutyrate, succinic semialdehyde, D-2-hydroxyglutarate, 4,5-dihydrohexanoate) and oxidative stress were significantly increased in multiple tissues derived from aldh5a1-/- mice. These metabolic perturbations were associated with decreased levels of reduced glutathione (GSH) in brain and liver of aldh5a1-/- mice, as well as increased levels of adducts of the lipid peroxidation by-product, 4-hydroxy-2-nonenal (4-HNE). Decreased liver mRNA levels for multiple genes associated with mTOR signaling and oxidative stress parameters were detected in aldh5a1-/- mice, and several were significantly improved with the administration of mTOR inhibitors (Torin 1/Torin 2). Western blot analysis of selected proteins corresponding to oxidative stress transcripts (glutathione transferase, superoxide dismutase, peroxiredoxin 1) confirmed gene expression findings. Our data provide additional preclinical evidence for the potential therapeutic efficacy of mTOR inhibitors in SSADHD.


Journal of Pharmacology and Experimental Therapeutics | 2014

Assessment of a Candidate Marker Constituent Predictive of a Dietary Substance–Drug Interaction: Case Study with Grapefruit Juice and CYP3A4 Drug Substrates

Garrett R. Ainslie; Kristina K. Wolf; Yingxin Li; Elizabeth A. Connolly; Yolanda Scarlett; J. Heyward Hull; Mary F. Paine

Dietary substances, including herbal products and citrus juices, can perpetrate interactions with conventional medications. Regulatory guidances for dietary substance–drug interaction assessment are lacking. This deficiency is due in part to challenges unique to dietary substances, a lack of requisite human-derived data, and limited jurisdiction. An in vitro–in vivo extrapolation (IVIVE) approach to help address some of these hurdles was evaluated using the exemplar dietary substance grapefruit juice (GFJ), the candidate marker constituent 6′,7′-dihydroxybergamottin (DHB), and the purported victim drug loperamide. First, the GFJ-loperamide interaction was assessed in 16 healthy volunteers. Loperamide (16 mg) was administered with 240 ml of water or GFJ; plasma was collected from 0 to 72 hours. Relative to water, GFJ increased the geometric mean loperamide area under the plasma concentration–time curve (AUC) significantly (1.7-fold). Second, the mechanism-based inhibition kinetics for DHB were recovered using human intestinal microsomes and the index CYP3A4 reaction, loperamide N-desmethylation (KI [concentration needed to achieve one-half kinact], 5.0 ± 0.9 µM; kinact [maximum inactivation rate constant], 0.38 ± 0.02 minute−1). These parameters were incorporated into a mechanistic static model, which predicted a 1.6-fold increase in loperamide AUC. Third, the successful IVIVE prompted further application to 15 previously reported GFJ-drug interaction studies selected according to predefined criteria. Twelve of the interactions were predicted to within the 25% predefined criterion. Results suggest that DHB could be used to predict the CYP3A4-mediated effect of GFJ. This time- and cost-effective IVIVE approach could be applied to other dietary substance–drug interactions to help prioritize new and existing drugs for more advanced (dynamic) modeling and simulation and clinical assessment.


Clinical and Translational Science | 2017

Comparison of a New Intranasal Naloxone Formulation to Intramuscular Naloxone: Results from Hypothesis-generating Small Clinical Studies

Brandon T. Gufford; Garrett R. Ainslie; John R. White; Matthew E. Layton; Jeannie M. Padowski; Gary M. Pollack; Mary F. Paine

Easy‐to‐use naloxone formulations are needed to help address the opioid overdose epidemic. The pharmacokinetics of i.v., i.m., and a new i.n. naloxone formulation (2 mg) were compared in six healthy volunteers. Relative to i.m. naloxone, geometric mean (90% confidence interval [CI]) absolute bioavailability of i.n. naloxone was modestly lower (55%; 90% CI, 43–70% vs. 41%; 90% CI, 27–62%), whereas average (±SE) mean absorption time was substantially shorter (74 ± 8.8 vs. 6.7 ± 4.9 min). The opioid‐attenuating effects of i.n. naloxone were compared with i.m. naloxone (2 mg) after administration of oral alfentanil (4 mg) to a separate group of six healthy volunteers pretreated with 240 mL of water or grapefruit juice. The i.m. and i.n. naloxone attenuated miosis by similar extents after water (40 ± 15 vs. 41 ± 21 h*%) and grapefruit juice (49 ± 18 vs. 50 ± 22 h*%) pretreatment. Results merit further testing of this new naloxone formulation.


Toxicology in Vitro | 2017

In vitro toxicological evaluation of NCS-382, a high-affinity antagonist of γ-hydroxybutyrate (GHB) binding.

Kara R. Vogel; Garrett R. Ainslie; J.-B. Roullet; A. McConnell; K.M. Gibson

γ-Hydroxybutyric acid (GHB), a minor metabolite of the inhibitory neurotransmitter GABA, can accumulate to significant concentrations in the heritable disorder of GABA degradation, succinic semialdehyde dehydrogenase (SSADH) deficiency (SSADHD). Moreover, GHB may be employed in therapeutic settings (treatment of narcolepsy), as well as instances of illicit activity, including acquaintance sexual assault and the induction of euphoria. High-affinity binding sites for GHB in the brain have been identified, although the absolute identity of these receptors remains unclear. Pharmacological antagonism of GHB binding may have multiple instances of therapeutic relevance. The high affinity GHB receptor antagonist, NCS-382 (6,7,8,9-tetrahydro-5-hydroxy-5H-benzo-cyclohept-6-ylideneacetic acid) has not been piloted in humans. To address the potential clinical utility of NCS-382, we have piloted initial studies of its toxicology in HepG2 and primary hepatocyte cells. At high dose (0.5mM), NCS-382 showed no capacity for inhibition of microsomal CYPs (CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4) and minimal potential for activation of xenobiotic nuclear receptors. Additional cellular integrity and functional assays (viability, oxidative stress, apoptosis, ATP production) revealed little evidence for cytotoxicity, and a low degree of dysregulation of >370 genes actively engaged in the mediation of cellular toxicity. In vitro testing indicates a low probability of cellular toxicity associated with NCS-382.


Toxicology in Vitro | 2018

Toxicologic/transport properties of NCS-382, a γ-hydroxybutyrate (GHB) receptor ligand, in neuronal and epithelial cells: Therapeutic implications for SSADH deficiency, a GABA metabolic disorder

Kara R. Vogel; Garrett R. Ainslie; A. McConnell; J.-B. Roullet; K.M. Gibson

We report the in vitro assessment of pharmacotoxicity for the high-affinity GHB receptor ligand, NCS-382, using neuronal stem cells derived from mice with a targeted deletion of the aldehyde dehydrogenase 5a1 gene (succinic semialdehyde dehydrogenase(SSADH)-deficient mice). These animals represent a phenocopy of the human disorder of GABA metabolism, SSADH deficiency, that metabolically features accumulation of both GABA and the GABA-analog γ-hydroxybutyric acid in conjunction with a nonspecific neurological phenotype. We demonstrate for the first time using MDCK cells that NCS-382 is actively transported and capable of inhibiting GHB transport. Following these in vitro assays with in vivo studies in aldh5a1-/- mice, we found the ratio of brain/liver GHB to be unaffected by chronic NCS-382 administration (300mg/kg; 7 consecutive days). Employing a variety of cellular parameters (reactive oxygen and superoxide species, ATP production and decay, mitochondrial and lysosomal number, cellular viability and necrosis), we demonstrate that up to 1mM NCS-382 shows minimal evidence of pharmacotoxicity. As well, studies at the molecular level indicate that the effects of NCS-382 at 0.5mM are minimally toxic as evaluated using gene expression assay. The cumulative data provides increasing confidence that NCS-382 could eventually be considered in the therapeutic armament for heritable SSADH deficiency.


Molecular genetics and metabolism reports | 2015

Physiological competition of brain phenylalanine accretion: Initial pharmacokinetic analyses of aminoisobutyric and methylaminoisobutyric acids in Pahenu2 −/− mice

Kara R. Vogel; Garrett R. Ainslie; Brian Phillips; Erland Arning; Teodoro Bottiglieri; Danny D. Shen; K. Michael Gibson

Objective Initial studies on the use of non-physiological amino acids (NPAAs) to block the accretion of Phe in the brain of Pahenu2 −/− mice revealed that 2-aminoisobutyrate (AIB) and N-methyl-2-aminoisobutyrate (MAIB) were promising lead compounds whose pharmacokinetic parameters warranted investigation. Methods Control and Pahenu2 −/− mice received intraperitoneal NPAA treatments as test compounds (150, 300 and 500 mg/kg, 1 or 7 days) followed by collection of sera, liver and brain. LC–MS analysis was developed to quantify both AIB and MAIB in all matrices, and pharmacokinetic parameters for distribution, partitioning, accumulation and MAIB demethylation were determined. Results MAIB was partially converted to AIB in vivo. AIB and MAIB partitioned similarly from sera to the brain and liver, with an approximate 10-fold higher accumulation in the liver compared to the brain. In comparison to MAIB, AIB accumulated to approximately 3 to 7-fold higher concentration in the brain. Analysis of the brain and liver revealed a trend toward decreased Phe with increased MAIB serum concentration. Conclusions Our data support further pharmacokinetic characterization of MAIB and AIB in preparation for additional preclinical safety, toxicity and tolerability studies of both AIB and MAIB.

Collaboration


Dive into the Garrett R. Ainslie's collaboration.

Top Co-Authors

Avatar

Kara R. Vogel

Washington State University Spokane

View shared research outputs
Top Co-Authors

Avatar

Mary F. Paine

Washington State University

View shared research outputs
Top Co-Authors

Avatar

K. Michael Gibson

Washington State University Spokane

View shared research outputs
Top Co-Authors

Avatar

K.M. Gibson

Washington State University Spokane

View shared research outputs
Top Co-Authors

Avatar

Erwin E.W. Jansen

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gajja S. Salomons

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary M. Pollack

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

J.-B. Roullet

Washington State University Spokane

View shared research outputs
Top Co-Authors

Avatar

Kristina K. Wolf

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge