Brandon T. Gufford
Indiana University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brandon T. Gufford.
Clinical Pharmacology & Therapeutics | 2016
Michael T. Eadon; Zeruesenay Desta; Kenneth D. Levy; Brian S. Decker; Rc Pierson; Victoria M. Pratt; J T Callaghan; Marc B. Rosenman; Janet S. Carpenter; Ann M. Holmes; Ca McDonald; Eric A. Benson; As Patil; Raj Vuppalanchi; Brandon T. Gufford; N. Dave; Jd Robarge; Ma Hyder; Dm Haas; Rolf P. Kreutz; Paul R. Dexter; Todd C. Skaar; David A. Flockhart
Hospital systems increasingly utilize pharmacogenomic testing to inform clinical prescribing. Successful implementation efforts have been modeled at many academic centers. In contrast, this report provides insights into the formation of a pharmacogenomics consultation service at a safety‐net hospital, which predominantly serves low‐income, uninsured, and vulnerable populations. The report describes the INdiana GENomics Implementation: an Opportunity for the UnderServed (INGENIOUS) trial and addresses concerns of adjudication, credentialing, and funding.
Journal of Pharmacology and Experimental Therapeutics | 2016
Andrea R. Masters; Brandon T. Gufford; Jessica Bo Li Lu; Ingrid F. Metzger; David R. Jones; Zeruesenay Desta
Bupropion, widely used as an antidepressant and smoking cessation aid, undergoes complex metabolism to yield numerous metabolites with unique disposition, effect, and drug–drug interactions (DDIs) in humans. The stereoselective plasma and urinary pharmacokinetics of bupropion and its metabolites were evaluated to understand their potential contributions to bupropion effects. Healthy human volunteers (n = 15) were administered a single oral dose of racemic bupropion (100 mg), which was followed by collection of plasma and urine samples and determination of bupropion and metabolite concentrations using novel liquid chromatography–tandem mass spectrometry assays. Time-dependent, elimination rate–limited, stereoselective pharmacokinetics were observed for all bupropion metabolites. Area under the plasma concentration-time curve from zero to infinity ratios were on average approximately 65, 6, 6, and 4 and Cmax ratios were approximately 35, 6, 3, and 0.5 for (2R,3R)-/(2S,3S)-hydroxybupropion, R-/S-bupropion, (1S,2R)-/(1R,2S)-erythrohydrobupropion, and (1R,2R)-/(1S,2S)-threohydrobupropion, respectively. The R-/S-bupropion and (1R,2R)-/(1S,2S)-threohydrobupropion ratios are likely indicative of higher presystemic metabolism of S- versus R-bupropion by carbonyl reductases. Interestingly, the apparent renal clearance of (2S,3S)-hydroxybupropion was almost 10-fold higher than that of (2R,3R)-hydroxybupropion. The prediction of steady-state pharmacokinetics demonstrated differential stereospecific accumulation [partial area under the plasma concentration-time curve after the final simulated bupropion dose (300–312 hours) from 185 to 37,447 nM⋅h] and elimination [terminal half-life of approximately 7–46 hours] of bupropion metabolites, which may explain observed stereoselective differences in bupropion effect and DDI risk with CYP2D6 at steady state. Further elucidation of bupropion and metabolite disposition suggests that bupropion is not a reliable in vivo marker of CYP2B6 activity. In summary, to our knowledge, this is the first comprehensive report to provide novel insight into mechanisms underlying bupropion disposition by detailing the stereoselective pharmacokinetics of individual bupropion metabolites, which will enhance clinical understanding of bupropion’s effects and DDIs with CYP2D6.
Clinical Pharmacology & Therapeutics | 2018
Kimberly S. Burgess; Joseph Ipe; Marelize Swart; Ingrid F. Metzger; Jessica Bo Li Lu; Brandon T. Gufford; Nancy Thong; Zeruesenay Desta; Roger Gaedigk; Robin E. Pearce; Andrea Gaedigk; Yunlong Liu; Todd C. Skaar
CYP2B6*6 and CYP2B6*18 are the most clinically important variants causing reduced CYP2B6 protein expression and activity. However, these variants do not account for all variability in CYP2B6 activity. Emerging evidence has shown that genetic variants in the 3′UTR may explain variable drug response by altering microRNA regulation. Five 3′UTR variants were associated with significantly altered efavirenz AUC0‐48 (8‐OH‐EFV/EFV) ratios in healthy human volunteers. The rs70950385 (AG>CA) variant, predicted to create a microRNA binding site for miR‐1275, was associated with a 33% decreased CYP2B6 activity among normal metabolizers (AG/AG vs. CA/CA (P < 0.05)). In vitro luciferase assays were used to confirm that the CA on the variant allele created a microRNA binding site causing an 11.3% decrease in activity compared to the AG allele when treated with miR‐1275 (P = 0.0035). Our results show that a 3′UTR variant contributes to variability in CYP2B6 activity.
Clinical and Translational Science | 2017
Brandon T. Gufford; Garrett R. Ainslie; John R. White; Matthew E. Layton; Jeannie M. Padowski; Gary M. Pollack; Mary F. Paine
Easy‐to‐use naloxone formulations are needed to help address the opioid overdose epidemic. The pharmacokinetics of i.v., i.m., and a new i.n. naloxone formulation (2 mg) were compared in six healthy volunteers. Relative to i.m. naloxone, geometric mean (90% confidence interval [CI]) absolute bioavailability of i.n. naloxone was modestly lower (55%; 90% CI, 43–70% vs. 41%; 90% CI, 27–62%), whereas average (±SE) mean absorption time was substantially shorter (74 ± 8.8 vs. 6.7 ± 4.9 min). The opioid‐attenuating effects of i.n. naloxone were compared with i.m. naloxone (2 mg) after administration of oral alfentanil (4 mg) to a separate group of six healthy volunteers pretreated with 240 mL of water or grapefruit juice. The i.m. and i.n. naloxone attenuated miosis by similar extents after water (40 ± 15 vs. 41 ± 21 h*%) and grapefruit juice (49 ± 18 vs. 50 ± 22 h*%) pretreatment. Results merit further testing of this new naloxone formulation.
Pharmacogenomics | 2017
Rebecca C. Pierson; Brandon T. Gufford; Zeruesenay Desta; Michael T. Eadon
Pharmacogenomic testing has become increasingly widespread. However, there remains a need to bridge the gap between test results and providers lacking the expertise required to interpret these results. The Indiana Genomics Implementation trial is underway at our institution to examine total healthcare cost and patient outcomes after genotyping in a safety-net healthcare system. As part of the study, trial investigators and clinical pharmacology fellows interpret genotype results, review patient histories and medication lists and evaluate potential drug-drug interactions. We present a case series of patients in whom pharmacogenomic consultations aided providers in appropriately applying pharmacogenomic results within the clinical context. Formal consultations not only provide valuable patient care information but educational opportunities for the fellows to cement pharmacogenomic concepts.
Pharmacology Research & Perspectives | 2018
Brandon T. Gufford; Jason D. Robarge; Michael T. Eadon; Hongyu Gao; Hai Lin; Yunlong Liu; Zeruesenay Desta; Todd C. Skaar
Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno‐ and endo‐biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA‐seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP‐glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione‐S‐transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin‐induced (>1.25‐fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25‐fold) the expression of 3 genes (P < .05). Rifampin‐induced miRNA expression changes correlated with mRNA changes and miRNAs were identified that may modulate conjugating enzyme expression. NAT2 gene expression was most strongly repressed (1.3‐fold) by rifampin while UGT1A4 and UGT1A1 genes were most strongly induced (7.9‐ and 4.8‐fold, respectively). Physiologically based pharmacokinetic modeling (PBPK) was used to simulate the clinical consequences of rifampin induction of CYP3A4‐ and UGT1A4‐mediated midazolam metabolism. Simulations evaluating isolated UGT1A4 induction predicted increased midazolam N‐glucuronide exposure (~4‐fold) with minimal reductions in parent midazolam exposure (~10%). Simulations accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10‐fold decrease in parent midazolam exposure with only a ~2‐fold decrease in midazolam N‐glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.
Author | 2017
Kimberly S. Burgess; Joseph Ipe; Marelize Swart; Ingrid F. Metzger; Jessica Bo Li Lu; Brandon T. Gufford; Nancy Thong; Zeruesenay Desta; Roger Gaedigk; Robin E. Pearce; Andrea Gaedigk; Yunlong Liu; Todd C. Skaar
PMC | 2016
Brandon T. Gufford; Jessica Bo Li Lu; Ingrid F. Metzger; David R. Jones; Zeruesenay Desta
The FASEB Journal | 2013
Garrett R. Ainslie; Brandon T. Gufford; Christina S. Won; Kristina K. Wolf; Mary F. Paine