Garrett West
Goddard Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Garrett West.
UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts VIII | 2017
Matthew R. Bolcar; Steve Aloezos; Vincent T. Bly; Christine Collins; Julie A. Crooke; Courtney D. Dressing; Lou Fantano; Lee D. Feinberg; Gene Gochar; Qian Gong; Jason E. Hylan; Andrew Jones; Irving Linares; Marc Postman; Laurent Pueyo; Aki Roberge; Lia W. Sacks; Steven Tompkins; Garrett West
In preparation for the 2020 Astrophysics Decadal Survey, NASA has commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. The LUVOIR Science and Technology Definition Team (STDT) has identified a broad range of science objectives including the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the epoch of reionization, star and planet formation, and the remote sensing of Solar System bodies. NASA’s Goddard Space Flight Center (GSFC) is providing the design and engineering support to develop executable and feasible mission concepts that are capable of the identified science objectives. We present an update on the first of two architectures being studied: a 15- meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100 nm to 2.5 μm. Four instruments are being developed for this architecture: an optical / near-infrared coronagraph capable of 10-10 contrast at inner working angles as small as 2 λ/D; the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 – 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-IR imager; and a UV spectro-polarimeter being contributed by Centre National d’Etudes Spatiales (CNES). A fifth instrument, a multi-resolution optical-NIR spectrograph, is planned as part of a second architecture to be studied in late 2017.
arXiv: Instrumentation and Methods for Astrophysics | 2017
Walter M. Harris; Brian T. Fleming; Garrett West; Stephan R. McCandliss; John M. O'Meara; Jason Tumlinson; David Schiminovich; Matthew R. Bolcar; Leonidas A. Moustakas; Jane R. Rigby; Ilaria Pascucci
The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 – 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 – 18,000) and medium (R = 30,000 – 65,000) resolution modes across the far-ultraviolet (FUV: 100 – 200 nm) and nearultraviolet (NUV: 200 – 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 – 200nm, 13 milliarcsecond angular resolution, 2 × 2 arcminute field-of-view) that will employ a complement of narrow- and medium-band filters. The instrument definition, design, and development are being carried out by an instrument study team led by the University of Colorado, Goddard Space Flight Center, and the LUVOIR Science and Technology Definition Team. LUMOS has recently completed a preliminary design in Goddard’s Instrument Design Laboratory and is being incorporated into the working LUVOIR mission concept. In this proceeding, we describe the instrument requirements for LUMOS, the instrument design, and technology development recommendations to support the hardware required for LUMOS. We present an overview of LUMOS’ observing modes and estimated performance curves for effective area, spectral resolution, and imaging performance. Example “LUMOS 100-hour Highlights” observing programs are presented to demonstrate the potential power of LUVOIR’s ultraviolet spectroscopic capabilities.
Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave | 2018
Matthew R. Bolcar; Jason E. Hylan; Julie A. Crooke; Ginger M. Bronke; Christine Collins; James A. Corsetti; Joseph Generie; Qian Gong; Tyler D. Groff; William L. Hayden; Andrew Jones; Bryan D. Matonak; Sang Park; Lia W. Sacks; Garrett West; Kan Yang; Neil Zimmerman
NASA commissioned the study of four large mission concepts, including the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor, to be evaluated by the 2020 Decadal Survey in Astrophysics. In response, the Science and Technology Definition Team (STDT) identified a broad range of science objectives for LUVOIR that include the direct imaging and spectral characterization of habitable exoplanets around sun-like stars, the study of galaxy formation and evolution, the exchange of matter between galaxies, star and planet formation, and the remote sensing of Solar System objects. To meet these objectives, the LUVOIR Study Office, located at NASA’s Goddard Space Flight Center (GSFC), completed the first design iteration of a 15-m segmented-aperture observatory that would be launched by the Space Launch System (SLS) Block 2 configuration. The observatory includes four serviceable instruments: the Extreme Coronagraph for Living Planetary Systems (ECLIPS), an optical / near-infrared coronagraph capable of delivering 10−10 contrast at inner working angles as small as 2 λ/D; the LUVOIR UV Multi-object Spectrograph (LUMOS), which will provide low- and medium-resolution UV (100 – 400 nm) multi-object imaging spectroscopy in addition to far-UV imaging; the High Definition Imager (HDI), a high-resolution wide-field-of-view NUV-Optical-NIR imager; and Pollux, a high-resolution UV spectro-polarimeter being contributed by Centre National d’Etudes Spatiales (CNES). The study team has executed a second design iteration to further improve upon the 15-m concept, while simultaneously studying an 8-m concept. In these proceedings, we provide an update on these two architectures.
Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave | 2018
Larry Dewell; Lia W. Sacks; Kuo-Chia Liu; Kiarash Tajdaran; Kong Q. Ha; Raymond M. Bell; Carl Blaurock; Matthew R. Bolcar; Julie A. Crooke; Jason E. Hylan; Christine Collins; Garrett West
The need for high payload dynamic stability and ultra-stable mechanical systems is an overarching technology need for large space telescopes such as the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor concept. The LUVOIR concept includes a 15-meter-diameter segmented-aperture telescope with a suite of serviceable instruments operating over a range of wavelengths between 100 nm to 2.5 μm. Wavefront error (WFE) stability of less than 10 picometers RMS of uncorrected system WFE per wavefront control step represents a drastic performance improvement over current space-based telescopes being fielded. Through the utilization of an isolation architecture that involves no mechanical contact between the telescope and the host spacecraft structure, a system design is realized that maximizes the telescope dynamic stability performance without driving stringent technology requirements on spacecraft structure, sensors or actuators. Through analysis of the LUVOIR finite element model and linear optical model, the wavefront error and Line- Of-Sight (LOS) jitter performance is discussed in this paper when using the Vibration Isolation and Precision Pointing System (VIPPS) being developed cooperatively with Lockheed Martin in addition to a multi-loop control architecture. The multi-loop control architecture consists of the spacecraft Attitude Control System (ACS), VIPPS, and a Fast Steering Mirror on the instrument. While the baseline attitude control device for LUVOIR is a set of Control Moment Gyroscopes (CMGs), Reaction Wheel Assembly (RWA) disturbance contribution to wavefront error stability and LOS stability are presented to give preliminary results in this paper. CMG disturbance will be explored in further work to be completed.
Imaging and Applied Optics 2015 (2015), paper FW3B.1 | 2015
Joseph M. Howard; Garrett West
The past, present, and future usage of Freeform Optics at NASA are discussed in this presentation. Article not available.
International Optical Design Conference | 2014
Garrett West; Joseph M. Howard
A suite of CODE V macros has been developed to assist the optical designer in visualizing and manipulating optical data. Limits within the CODE V macro language and graphics functions are surpassed by accessing a MATLAB subroutine. A number of extension macros are discussed and examples are shown.
Archive | 2018
Garrett West; James A. Corsetti; Qian Gong; Matthew R. Bolcar; Jason E. Hylan; Andrew L. Jones; Julie A. Crooke
Archive | 2018
Matthew R. Bolcar; Julie A. Crooke; Jason E. Hylan; Ginger M. Bronke; Christine Collins; James A. Corsetti; Joseph Generie; Qian Gong; Tyler D. Groff; William L. Hayden; Andrew L. Jones; Bryan D. Matonak; Sang C. Park; Lia W. Sacks; Garrett West; Kan Yang; Neil Zimmerman
Archive | 2017
Garrett West; Joseph M. Howard
Archive | 2016
Matthew R. Bolcar; Garrett West