Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Garry C. Whitelam is active.

Publication


Featured researches published by Garry C. Whitelam.


The Plant Cell | 1993

Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light.

Garry C. Whitelam; Emma Johnson; Jinrong Peng; Pierre Carol; Mary L. Anderson; John S. Cowl; Nicholas Paul Harberd

Phytochrome is a family of photoreceptors that regulates plant photomorphogenesis; the best-characterized member of this family is phytochrome A. Here, we report the identification of novel mutations at three Arabidopsis loci (fhy1, fhy2, and fhy3) that confer an elongated hypocotyl in far-red but not in white light. fhy2 mutants are phytochrome A deficient, have reduced or undetectable levels of PHYA transcripts, and contain structural alterations within the PHYA gene. When grown in white light, fhy2 mutants are morphologically indistinguishable from wild-type plants. Thus, phytochrome A appears to be dispensable in white light-grown Arabidopsis plants. fhy2 alleles confer partially dominant phenotypes in far-red light, suggesting that the relative abundance of phytochrome A can affect the extent of the far-red-mediated hypocotyl growth inhibition response. Plants homozygous for the recessive fhy1 and fhy3 mutations have normal levels of functional phytochrome A. The FHY1 and FHY3 gene products may be responsible for the transduction of the far-red light signal from phytochrome A to downstream processes involved in hypocotyl growth regulation.


Current Biology | 2009

High Temperature-Mediated Adaptations in Plant Architecture Require the bHLH Transcription Factor PIF4

Maria A. Koini; Liz Alvey; Trudie Allen; Ceinwen A. Tilley; Nicholas P. Harberd; Garry C. Whitelam; Keara A. Franklin

Exposure of Arabidopsis plants to high temperature (28 degrees C) results in a dramatic change in plant development. Responses to high temperature include rapid extension of plant axes, leaf hyponasty, and early flowering. These phenotypes parallel plant responses to the threat of vegetational shade and have been shown to involve the hormone auxin. In this work, we demonstrate that high temperature-induced architectural adaptations are mediated through the bHLH transcriptional regulator PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Roles for PIF4 have previously been established in both light and gibberellin (GA) signaling, through interactions with phytochromes and DELLA proteins, respectively. Mutants deficient in PIF4 do not display elongation responses or leaf hyponasty upon transfer to high temperature. High temperature-mediated induction of the auxin-responsive gene IAA29 is also abolished in these plants. An early flowering response to high temperature is maintained in pif4 mutants, suggesting that architectural and flowering responses operate via separate signaling pathways. The role of PIF4 in temperature signaling does not, however, appear to operate through interaction with either phytochrome or DELLA proteins, suggesting the existence of a novel regulatory mechanism. We conclude that PIF4 is an important component of plant high temperature signaling and integrates multiple environmental cues during plant development.


The Plant Cell | 1998

Phytochrome E Influences Internode Elongation and Flowering Time in Arabidopsis

Paul F. Devlin; Samita R. Patel; Garry C. Whitelam

From a screen of M2 seedlings derived from γ-mutagenesis of seeds doubly null for phytochromes phyA and phyB, we isolated a mutant lacking phyE. The PHYE gene of the selected mutant, phyE-1, was found to contain a 1-bp deletion at a position equivalent to codon 726, which is predicted to result in a premature stop at codon 739. Immunoblot analysis showed that the phyE protein was undetectable in the phyE-1 mutant. In the phyA- and phyB-deficient background, phyE deficiency led to early flowering, elongation of internodes between adjacent rosette leaves, and reduced petiole elongation. This is a phenocopy of the response of phyA phyB seedlings to end-of-day far-red light treatments. Furthermore, a phyE deficiency attenuated the responses of phyA phyB seedlings to end-of-day far-red light treatments. Monogenic phyE mutants were indistinguishable from wild-type seedlings. However, phyB phyE double mutants flowered earlier and had longer petioles than did phyB mutants. The elongation and flowering responses conferred by phyE deficiency are typical of shade avoidance responses to the low red/far-red ratio. We conclude that in conjunction with phyB and to a lesser extent with phyD, phyE functions in the regulation of the shade avoidance syndrome.


Nature | 2003

Gating of the rapid shade-avoidance response by the circadian clock in plants

Michael G. Salter; Keara A. Franklin; Garry C. Whitelam

The phytochromes are a family of plant photoreceptor proteins that control several adaptive developmental strategies. For example, the phytochromes perceive far-red light (wavelengths between 700 and 800 nm) reflected or scattered from the leaves of nearby vegetation. This provides an early warning of potential shading, and triggers a series of ‘shade-avoidance’ responses, such as a rapid increase in elongation, by which the plant attempts to overgrow its neighbours. Other, less immediate, responses include accelerated flowering and early production of seeds. However, little is known about the molecular events that connect light perception with increased growth in shade avoidance. Here we show that the circadian clock gates this rapid shade-avoidance response. It is most apparent around dusk and is accompanied by altered expression of several genes. One of these rapidly responsive genes encodes a basic helix–loop–helix protein, PIL1, previously shown to interact with the clock protein TOC1 (ref. 4). Furthermore PIL1 and TOC1 are both required for the accelerated growth associated with the shade-avoidance response.


Plant Physiology | 1994

Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions)

Emma Johnson; Marie Bradley; Nicholas P. Harberd; Garry C. Whitelam

Several aspects of the photophysiology of wild-type Arabidopsis thaliana seedlings were compared with those of a phytochrome A null mutant, phyA-1, and a mutant, fhy1, that is putatively involved in the transduction of light signals from phytochrome A. Although phyA seedlings display a near wild-type phenotype when grown in white light (W), they nevertheless display several photomorphogenic abnormalities. Thus, whereas the germination of wild-type and fhy1 seeds is almost fully promoted by a pulse of red light (R) or by continuous far-red light (FR), phyA seed germination is responsive only to R. Following growth under day/night cycles, but not under continuous W, the hypocotyls of light-grown phyA and fhy1 seedlings are more elongated than those of wild-type seedlings. For seedlings grown under low red/far-red (R/FR) ratio light conditions, phyA and fhy1 seedlings display a more marked promotion of hypocotyl elongation than wild-type seedlings. Similarly, seedlings that are doubly null for phytochrome A and phytochrome B(phyA phyB) also have more elongated hypocotyls under low R/FR ratio conditions than phyB seedlings. This indicates that phytochrome A action in light-grown seedlings is antagonistic to the action of phytochrome B. Although wild-type, fhy1, and phyA seedlings flower at essentially the same time under both short-day and long-day conditions, an obvious consequence of phytochrome A deficiency is a pronounced late flowering under conditions where a short day of 8 h of fluorescent W is extended by 8 h of low-fluence-rate incandescent light. The evidence thus indicates that phytochrome A plays a role in seed germination, in the control of elongation growth of light-grown seedlings, and in the perception of daylength.


Nature | 2002

Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation.

Dror Shalitin; Hongyun Yang; Todd Mockler; Maskit Maymon; Hongwei Guo; Garry C. Whitelam; Chentao Lin

Cryptochromes are blue/ultraviolet-A light receptors that mediate various light responses in plants and animals. But the initial photochemical reaction of cryptochrome is still unclear. For example, although most photoreceptors are known to undergo light-dependent protein modification such as phosphorylation, no blue-light dependent phosphorylation has been reported for a cryptochrome. Arabidopsis cryptochrome 2 (cry2) mediates light regulation of seedling development and photoperiodic flowering. The physiological activity and cellular level of cry2 protein are light-dependent, and protein–protein interactions are important for cry2 function. Here we report that cry2 undergoes a blue-light-dependent phosphorylation, and that cry2 phosphorylation is associated with its function and regulation. Our results suggest that, in the absence of light, cry2 remains unphosphorylated, inactive and stable; absorption of blue light induces the phosphorylation of cry2, triggering photomorphogenic responses and eventually degradation of the photoreceptor.


Plant Physiology | 2003

Phytochromes B, D, and E Act Redundantly to Control Multiple Physiological Responses in Arabidopsis

Keara A. Franklin; Uta Praekelt; Wendy M. Stoddart; Olivia E. Billingham; Karen J. Halliday; Garry C. Whitelam

Phytochrome-mediated perception of the ratio of red to far-red wavelengths in the ambient light environment is fundamental to plant growth and development. Such monitoring enables plants to detect neighboring vegetation and initiate avoidance responses, thus conferring considerable selective advantage. The shade avoidance syndrome in plants is characterized by elongation growth and early flowering, responses that are fully induced by end-of-day far-red light treatments. Elucidating the roles of individual phytochromes in mediating responses to red to far-red has however always been confounded by synergistic and mutually antagonistic coactions between family members. The creation of triple and quadruple mutants in Arabidopsis, deficient in multiple phytochromes, has revealed functional redundancy between phyB, D, and E in controlling flowering time, leaf development, and regulation of the homeobox gene,ATHB-2. In addition, mutant analysis suggests a possible novel role for phyC in suppressing ATHB-2 transcription in the light.


Plant Physiology | 1996

Phytochrome A Mediates the Promotion of Seed Germination by Very Low Fluences of Light and Canopy Shade Light in Arabidopsis.

Javier F. Botto; Rodolfo A. Sánchez; Garry C. Whitelam; Jorge J. Casal

Seeds of the wild type (WT) and of the phyA and phyB mutants of Arabidopsis thaliana were exposed to single red light (R)/far-red light (FR) pulses predicted to establish a series of calculated phytochrome photoequilibria (Pfr/P). WT and phyB seeds showed biphasic responses to Pfr/P. The first phase, i.e. the very-low-fluence response (VLFR), occurred below Pfr/P = 10-1%. The second phase, i.e. the low-fluence response, occurred above Pfr/P = 3%. The VLFR was similarly induced by either a FR pulse saturating photoconversion or a subsaturating R pulse predicted to establish the same Pfr/P. The VLFR was absent in phyA seeds, which showed a strong low-fluence response. In the field, even brief exposures to the very low fluences of canopy shade light (R/FR ratio < 0.05) promoted germination above dark controls in WT and phyB seeds but not in the phyA mutant. Seeds of the phyA mutant germinated normally under canopies providing higher R/FR ratios or under deep canopy shade light supplemented with R from light-emitting diodes. We propose that phytochrome A mediates VLFR of A. thaliana seeds.


Plant Physiology | 1994

Phytochrome B and at Least One Other Phytochrome Mediate the Accelerated Flowering Response of Arabidopsis thaliana L. to Low Red/Far-Red Ratio.

Karen J. Halliday; M. Koornneef; Garry C. Whitelam

We have investigated the involvement of phytochrome B in the early-flowering response of Arabidopsis thaliana L. seedlings to low red:far-red (R/FR) ratio light conditions. The phytochrome B-deficient hy3 (phyB) mutant is early flowering, and in this regard it resembles the shade-avoidance phenotype of its isogenic wild type. Seedlings carrying the hy2 mutation, resulting in a deficiency of phytochrome chromophore and hence of active phytochromes, also flower earlier than wild-type plants. Whereas hy3 or hy2 seedlings show only a slight acceleration of flowering in response to low R/FR ratio, seedlings that are doubly homozygous for both mutations flower earlier than seedlings carrying either phytochrome-related mutation alone. This additive effect clearly indicates the involvement of one or more phytochrome species in addition to phytochrome B in the flowering response as well as indicating the presence of some functional phytochrome B in hy2 seedlings. Seedlings that are homozygous for the hy3 mutation and one of the fca, fwa, or co late-flowering mutations display a pronounced early-flowering response to low R/FR ratio. A similar response to low R/FR ratio is displayed by seedlings doubly homozygous for the hy2 mutation and any one of the late-flowering mutations. Thus, placing the hy3 or hy2 mutations into a late-flowering background has the effect of uncovering a flowering response to low R/FR ratio. Seedlings that are triply homozygous for the hy3, hy2 mutations and a late-flowering mutation flower earlier than the double mutants and do not respond to low R/FR ratio. Thus, the observed flowering responses to low R/FR ratio in phytochrome B-deficient mutants can be attributed to the action of at least one other phytochrome species.


Plant Molecular Biology | 1993

Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures

Simon Firek; John Draper; Meran R. L. Owen; Atul R. Gandecha; Bill Cockburn; Garry C. Whitelam

A synthetic gene encoding an anti-phytochrome single-chain Fv (scFv) antibody bearing an N-terminal signal peptide has been used to transform tobacco plants. Immunoblot analysis showed that transformed plants accumulate high levels of scFv protein, accounting for up to 0.5% of the total soluble protein fraction, which could be extracted by simple infiltration and centrifugation of leaf tissue. A substantial proportion of the scFv protein extracted in this way was found to possess antigen-binding activity. Callus cell suspension cultures derived from transformed plants secrete functional scFv protein into the surrounding medium. Compared with the levels of scFv protein observed in plants expressing the native scFv gene, the incorporation of an N-terminal signal peptide, to target the scFv to the apoplast, results in elevated accumulation of the protein.

Collaboration


Dive into the Garry C. Whitelam's collaboration.

Top Co-Authors

Avatar

Harry Smith

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin C. Gough

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Li

University of Leicester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge J. Casal

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge