Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicholas P. Harberd is active.

Publication


Featured researches published by Nicholas P. Harberd.


Nature | 1999

‘Green revolution’ genes encode mutant gibberellin response modulators

Jinrong Peng; Donald E. Richards; Nigel M. Hartley; George P. Murphy; Katrien M. Devos; John E. Flintham; James Beales; Leslie J. Fish; Anthony J. Worland; Fatima Pelica; Duraialagaraja Sudhakar; Paul Christou; J. W. Snape; M. D. Gale; Nicholas P. Harberd

World wheat grain yields increased substantially in the 1960s and 1970s because farmers rapidly adopted the new varieties and cultivation methods of the so-called ‘green revolution’. The new varieties are shorter, increase grain yield at the expense of straw biomass, and are more resistant to damage by wind and rain,. These wheats are short because they respond abnormally to the plant growth hormone gibberellin. This reduced response to gibberellin is conferred by mutant dwarfing alleles at one of two Reduced height-1 (Rht-B1 and Rht-D1) loci,. Here we show that Rht-B1/Rht-D1 and maize dwarf-8 (d8), are orthologues of the Arabidopsis Gibberellin Insensitive (GAI) gene,. These genes encode proteins that resemble nuclear transcription factors and contain an SH2-like domain, indicating that phosphotyrosine may participate in gibberellin signalling. Six different orthologous dwarfing mutant alleles encode proteins that are altered in a conserved amino-terminal gibberellin signalling domain. Transgenic rice plants containing a mutant GAI allele give reduced responses to gibberellin and are dwarfed, indicating that mutant GAI orthologues could be used to increase yield in a wide range of crop species.


Development | 2004

Modulation of floral development by a gibberellin-regulated microRNA

Patrick Achard; Alan J. Herr; David C. Baulcombe; Nicholas P. Harberd

Floral initiation and floral organ development are both regulated by the phytohormone gibberellin (GA). For example, in short-day photoperiods, the Arabidopsis floral transition is strongly promoted by GA-mediated activation of the floral meristem-identity gene LEAFY. In addition, anther development and pollen microsporogenesis depend on GA-mediated opposition of the function of specific members of the DELLA family of GA-response repressors. We describe the role of a microRNA (miR159) in the regulation of short-day photoperiod flowering time and of anther development. MiR159 directs the cleavage of mRNA encoding GAMYB-related proteins. These proteins are transcription factors that are thought to be involved in the GA-promoted activation of LEAFY, and in the regulation of anther development. We show that miR159 levels are regulated by GA via opposition of DELLA function, and that both the sequence of miR159 and the regulation of miR159 levels by DELLA are evolutionarily conserved. Finally, we describe the phenotypic consequences of transgenic over-expression of miR159. Increased levels of miR159 cause a reduction in LEAFY transcript levels, delay flowering in short-day photoperiods, and perturb anther development. We propose that miR159 is a phytohormonally regulated homeostatic modulator of GAMYB activity, and hence of GAMYB-dependent developmental processes.


Nature | 2003

Auxin promotes Arabidopsis root growth by modulating gibberellin response

Xiangdong Fu; Nicholas P. Harberd

The growth of plant organs is influenced by a stream of the phytohormone auxin that flows from the shoot apex to the tip of the root. However, until now it has not been known how auxin regulates the cell proliferation and enlargement that characterizes organ growth. Here we show that auxin controls the growth of roots by modulating cellular responses to the phytohormone gibberellin (GA). GA promotes the growth of plants by opposing the effects of nuclear DELLA protein growth repressors, one of which is Arabidopsis RGA (for repressor of gal-3). GA opposes the action of several DELLA proteins by destabilizing them, reducing both the concentration of detectable DELLA proteins and their growth-restraining effects. We also show that auxin is necessary for GA-mediated control of root growth, and that attenuation of auxin transport or signalling delays the GA-induced disappearance of RGA from root cell nuclei. Our observations indicate that the shoot apex exerts long-distance control on the growth of plant organs through the effect of auxin on GA-mediated DELLA protein destabilization.


Nature | 2011

Multiple reference genomes and transcriptomes for Arabidopsis thaliana

Xiangchao Gan; Oliver Stegle; Jonas Behr; Joshua G. Steffen; Philipp Drewe; Katie L. Hildebrand; Rune Lyngsoe; Sebastian J. Schultheiss; Edward J. Osborne; Vipin T. Sreedharan; André Kahles; Regina Bohnert; Géraldine Jean; Paul S. Derwent; Paul J. Kersey; Eric J. Belfield; Nicholas P. Harberd; Eric Kemen; Christopher Toomajian; Paula X. Kover; Richard M. Clark; Gunnar Rätsch; Richard Mott

Genetic differences between Arabidopsis thaliana accessions underlie the plant’s extensive phenotypic variation, and until now these have been interpreted largely in the context of the annotated reference accession Col-0. Here we report the sequencing, assembly and annotation of the genomes of 18 natural A. thaliana accessions, and their transcriptomes. When assessed on the basis of the reference annotation, one-third of protein-coding genes are predicted to be disrupted in at least one accession. However, re-annotation of each genome revealed that alternative gene models often restore coding potential. Gene expression in seedlings differed for nearly half of expressed genes and was frequently associated with cis variants within 5 kilobases, as were intron retention alternative splicing events. Sequence and expression variation is most pronounced in genes that respond to the biotic environment. Our data further promote evolutionary and functional studies in A. thaliana, especially the MAGIC genetic reference population descended from these accessions.


Development | 2004

Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function.

Hui Cheng; Lianju Qin; Sorcheng Lee; Xiangdong Fu; Donald E. Richards; Dongni Cao; Da Luo; Nicholas P. Harberd; Jinrong Peng

The phytohormone gibberellin (GA) regulates the development and fertility of Arabidopsis flowers. The mature flowers of GA-deficient mutant plants typically exhibit reduced elongation growth of petals and stamens. In addition, GA-deficiency blocks anther development, resulting in male sterility. Previous analyses have shown that GA promotes the elongation of plant organs by opposing the function of the DELLA proteins, a family of nuclear growth repressors. However, it was not clear that the DELLA proteins are involved in the GA-regulation of stamen and anther development. We show that GA regulates cell elongation rather than cell division during Arabidopsis stamen filament elongation. In addition, GA regulates the cellular developmental pathway of anthers leading from microspore to mature pollen grain. Genetic analysis shows that the Arabidopsis DELLA proteins RGA and RGL2 jointly repress petal, stamen and anther development in GA-deficient plants, and that this function is enhanced by RGL1 activity. GA thus promotes Arabidopsis petal, stamen and anther development by opposing the function of the DELLA proteins RGA, RGL1 and RGL2.


The Plant Cell | 2003

Ethylene Regulates Arabidopsis Development via the Modulation of DELLA Protein Growth Repressor Function

Patrick Achard; Willem Vriezen; Dominique Van Der Straeten; Nicholas P. Harberd

Phytohormones regulate plant development via a poorly understood signal response network. Here, we show that the phytohormone ethylene regulates plant development at least in part via alteration of the properties of DELLA protein nuclear growth repressors, a family of proteins first identified as gibberellin (GA) signaling components. This conclusion is based on the following experimental observations. First, ethylene inhibited Arabidopsis root growth in a DELLA-dependent manner. Second, ethylene delayed the GA-induced disappearance of the DELLA protein repressor of ga1-3 from root cell nuclei via a constitutive triple response-dependent signaling pathway. Third, the ethylene-promoted “apical hook” structure of etiolated seedling hypocotyls was dependent on the relief of DELLA-mediated growth restraint. Ethylene, auxin, and GA responses now can be attributed to effects on DELLA function, suggesting that DELLA plays a key integrative role in the phytohormone signal response network.


Current Biology | 2009

High Temperature-Mediated Adaptations in Plant Architecture Require the bHLH Transcription Factor PIF4

Maria A. Koini; Liz Alvey; Trudie Allen; Ceinwen A. Tilley; Nicholas P. Harberd; Garry C. Whitelam; Keara A. Franklin

Exposure of Arabidopsis plants to high temperature (28 degrees C) results in a dramatic change in plant development. Responses to high temperature include rapid extension of plant axes, leaf hyponasty, and early flowering. These phenotypes parallel plant responses to the threat of vegetational shade and have been shown to involve the hormone auxin. In this work, we demonstrate that high temperature-induced architectural adaptations are mediated through the bHLH transcriptional regulator PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Roles for PIF4 have previously been established in both light and gibberellin (GA) signaling, through interactions with phytochromes and DELLA proteins, respectively. Mutants deficient in PIF4 do not display elongation responses or leaf hyponasty upon transfer to high temperature. High temperature-mediated induction of the auxin-responsive gene IAA29 is also abolished in these plants. An early flowering response to high temperature is maintained in pif4 mutants, suggesting that architectural and flowering responses operate via separate signaling pathways. The role of PIF4 in temperature signaling does not, however, appear to operate through interaction with either phytochrome or DELLA proteins, suggesting the existence of a novel regulatory mechanism. We conclude that PIF4 is an important component of plant high temperature signaling and integrates multiple environmental cues during plant development.


Current Biology | 2008

Plant DELLAs Restrain Growth and Promote Survival of Adversity by Reducing the Levels of Reactive Oxygen Species

Patrick Achard; Jean-Pierre Renou; Richard Berthomé; Nicholas P. Harberd; Pascal Genschik

Plant growth is adaptively modulated in response to environmental change. The phytohormone gibberellin (GA) promotes growth by stimulating destruction of the nuclear growth-repressing DELLA proteins [1-7], thus providing a mechanism for environmentally responsive growth regulation [8, 9]. Furthermore, DELLAs promote survival of adverse environments [8]. However, the relationship between these survival and growth-regulatory mechanisms was previously unknown. Here, we show that both mechanisms are dependent upon control of the accumulation of reactive oxygen species (ROS). ROS are small molecules generated during development and in response to stress that play diverse roles as eukaryotic intracellular second messengers [10]. We show that Arabidopsis DELLAs cause ROS levels to remain low after either biotic or abiotic stress, thus delaying cell death and promoting tolerance. In essence, stress-induced DELLA accumulation elevates the expression of genes encoding ROS-detoxification enzymes, thus reducing ROS levels. In accord with recent demonstrations that ROS control root cell expansion [11, 12], we also show that DELLAs regulate root-hair growth via a ROS-dependent mechanism. We therefore propose that environmental variability regulates DELLA activity [8] and that DELLAs in turn couple the downstream regulation of plant growth and stress tolerance through modulation of ROS levels.


Nature | 2012

Transcription factor PIF4 controls the thermosensory activation of flowering

S. Vinod Kumar; Doris Lucyshyn; Katja E. Jaeger; Enriqueta Alós; Elizabeth Alvey; Nicholas P. Harberd; Philip A. Wigge

Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change.


Plant Physiology | 1994

Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions)

Emma Johnson; Marie Bradley; Nicholas P. Harberd; Garry C. Whitelam

Several aspects of the photophysiology of wild-type Arabidopsis thaliana seedlings were compared with those of a phytochrome A null mutant, phyA-1, and a mutant, fhy1, that is putatively involved in the transduction of light signals from phytochrome A. Although phyA seedlings display a near wild-type phenotype when grown in white light (W), they nevertheless display several photomorphogenic abnormalities. Thus, whereas the germination of wild-type and fhy1 seeds is almost fully promoted by a pulse of red light (R) or by continuous far-red light (FR), phyA seed germination is responsive only to R. Following growth under day/night cycles, but not under continuous W, the hypocotyls of light-grown phyA and fhy1 seedlings are more elongated than those of wild-type seedlings. For seedlings grown under low red/far-red (R/FR) ratio light conditions, phyA and fhy1 seedlings display a more marked promotion of hypocotyl elongation than wild-type seedlings. Similarly, seedlings that are doubly null for phytochrome A and phytochrome B(phyA phyB) also have more elongated hypocotyls under low R/FR ratio conditions than phyB seedlings. This indicates that phytochrome A action in light-grown seedlings is antagonistic to the action of phytochrome B. Although wild-type, fhy1, and phyA seedlings flower at essentially the same time under both short-day and long-day conditions, an obvious consequence of phytochrome A deficiency is a pronounced late flowering under conditions where a short day of 8 h of fluorescent W is extended by 8 h of low-fluence-rate incandescent light. The evidence thus indicates that phytochrome A plays a role in seed germination, in the control of elongation growth of light-grown seedlings, and in the perception of daylength.

Collaboration


Dive into the Nicholas P. Harberd's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard Mott

University College London

View shared research outputs
Top Co-Authors

Avatar

Xiangdong Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Moritz

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge