Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Garth A. Kinberger is active.

Publication


Featured researches published by Garth A. Kinberger.


Journal of Medicinal Chemistry | 2016

Comprehensive Structure-Activity Relationship of Triantennary N-Acetylgalactosamine Conjugated Antisense Oligonucleotides for Targeted Delivery to Hepatocytes.

Thazha P. Prakash; Jinghua Yu; Michael T. Migawa; Garth A. Kinberger; W. Brad Wan; Michael E. Østergaard; Recaldo L. Carty; Guillermo Vasquez; Audrey Low; Alfred Chappell; Karsten Schmidt; Mariam Aghajan; Jeff Crosby; Heather M. Murray; Sheri L. Booten; Jill Hsiao; Armand Soriano; Todd Machemer; Patrick Cauntay; Sebastien A. Burel; Susan F. Murray; Hans Gaus; Mark J. Graham; Eric E. Swayze; Punit P. Seth

The comprehensive structure-activity relationships of triantennary GalNAc conjugated ASOs for enhancing potency via ASGR mediated delivery to hepatocytes is reported. Seventeen GalNAc clusters were assembled from six distinct scaffolds and attached to ASOs. The resulting ASO conjugates were evaluated in ASGR binding assays, in primary hepatocytes, and in mice. Five structurally distinct GalNAc clusters were chosen for more extensive evaluation using ASOs targeting SRB-1, A1AT, FXI, TTR, and ApoC III mRNAs. GalNAc-ASO conjugates exhibited excellent potencies (ED50 0.5-2 mg/kg) for reducing the targeted mRNAs and proteins. This work culminated in the identification of a simplified tris-based GalNAc cluster (THA-GN3), which can be efficiently assembled using readily available starting materials and conjugated to ASOs using a solution phase conjugation strategy. GalNAc-ASO conjugates thus represent a viable approach for enhancing potency of ASO drugs in the clinic without adding significant complexity or cost to existing protocols for manufacturing oligonucleotide drugs.


Journal of Medicinal Chemistry | 2010

Peptide Nucleic Acids Conjugated to Short Basic Peptides Show Improved Pharmacokinetics and Antisense Activity in Adipose Tissue

Edward Wancewicz; Martin Maier; Andrew M. Siwkowski; Klaus Albertshofer; Theodore M. Winger; Andres Berdeja; Hans Gaus; Timothy A. Vickers; C. Frank Bennett; Brett P. Monia; Richard H. Griffey; Christopher J. Nulf; Jiaxin Hu; David R. Corey; Eric E. Swayze; Garth A. Kinberger

A peptide nucleic acid (PNA) targeting a splice junction of the murine PTEN primary transcript was covalently conjugated to various basic peptides. When systemically administered to healthy mice, the conjugates displayed sequence-specific alteration of PTEN mRNA splicing as well as inhibition of full length PTEN protein expression. Correlating activity with drug concentration in various tissues indicated strong tissue-dependence, with highest levels of activity observed in adipose tissue. While the presence of a peptide carrier was found to be crucial for efficient delivery to tissue, little difference was observed between the various peptides evaluated. A second PNA-conjugate targeting the murine insulin receptor primary transcript showed a similar activity profile, suggesting that short basic peptides can generally be used to effectively deliver peptide nucleic acids to adipose tissue.


Nucleic Acids Research | 2015

Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity

Thazha P. Prakash; Walt F. Lima; Heather M. Murray; Wenyu Li; Garth A. Kinberger; Alfred Chappell; Hans Gaus; Punit P. Seth; Balkrishen Bhat; Stanley T. Crooke; Eric E. Swayze

The ss-siRNA activity in vivo requires a metabolically stable 5′-phosphate analog. In this report we used crystal structure of the 5′-phosphate binding pocket of Ago-2 bound with guide strand to design and synthesize ss-siRNAs containing various 5′-phosphate analogs. Our results indicate that the electronic and spatial orientation of the 5′-phosphate analog was critical for ss-siRNA activity. Chemically modified ss-siRNA targeting human apoC III mRNA demonstrated good potency for inhibiting ApoC III mRNA and protein in transgenic mice. Moreover, ApoC III ss-siRNAs were able to reduce the triglyceride and LDL cholesterol in transgenic mice demonstrating pharmacological effect of ss-siRNA. Our study provides guidance to develop surrogate phosphate analog for ss-siRNA and demonstrates that ss-siRNA provides an alternative strategy for therapeutic gene silencing.


Nucleic Acids Research | 2016

Hsp90 protein interacts with phosphorothioate oligonucleotides containing hydrophobic 2′-modifications and enhances antisense activity

Xue-hai Liang; Wen Shen; Hong Sun; Garth A. Kinberger; Thazha P. Prakash; Joshua Nichols; Stanley T. Crooke

RNase H1-dependent antisense oligonucleotides (ASOs) are chemically modified to enhance pharmacological properties. Major modifications include phosphorothioate (PS) backbone and different 2′-modifications in 2–5 nucleotides at each end (wing) of an ASO. Chemical modifications can affect protein binding and understanding ASO-protein interactions is important for better drug design. Recently we identified many intracellular ASO-binding proteins and found that protein binding could affect ASO potency. Here, we analyzed the structure-activity-relationships of ASO-protein interactions and found 2′-modifications significantly affected protein binding, including La, P54nrb and NPM. PS-ASOs containing more hydrophobic 2′-modifications exhibit higher affinity for proteins in general, although certain proteins, e.g. Ku70/Ku80 and TCP1, are less affected by 2′-modifications. We found that Hsp90 protein binds PS-ASOs containing locked-nucleic-acid (LNA) or constrained-ethyl-bicyclic-nucleic-acid ((S)-cEt) modifications much more avidly than 2′-O-methoxyethyl (MOE). ASOs bind the mid-domain of Hsp90 protein. Hsp90 interacts with more hydrophobic 2′ modifications, e.g. (S)-cEt or LNA, in the 5′-wing of the ASO. Reduction of Hsp90 protein decreased activity of PS-ASOs with 5′-LNA or 5′-cEt wings, but not with 5′-MOE wing. Together, our results indicate Hsp90 protein enhances the activity of PS/LNA or PS/(S)-cEt ASOs, and imply that altering protein binding of ASOs using different chemical modifications can improve therapeutic performance of PS-ASOs.


Nucleic Acids Research | 2017

Characterizing the effect of GalNAc and phosphorothioate backbone on binding of antisense oligonucleotides to the asialoglycoprotein receptor

Thazha P. Prakash; Aaron J. Donner; Garth A. Kinberger; Hans Gaus; Audrey Low; Michael E. Østergaard; Melanie Bell; Eric E. Swayze; Punit P. Seth

Abstract Targeted delivery of antisense oligonucleotides (ASO) to hepatocytes via the asialoglycoprotein receptor (ASGR) has improved the potency of ASO drugs ∼30-fold in the clinic (1). In order to fully characterize the effect of GalNAc valency, oligonucleotide length, flexibility and chemical composition on ASGR binding, we tested and validated a fluorescence polarization competition binding assay. The ASGR binding, and in vitro and in vivo activities of 1, 2 and 3 GalNAc conjugated single stranded and duplexed ASOs were studied. Two and three GalNAc conjugated single stranded ASOs bind the ASGR with the strongest affinity and display optimal in vitro and in vivo activities. 1 GalNAc conjugated ASOs showed 10-fold reduced ASGR binding affinity relative to three GalNAc ASOs but only 2-fold reduced activity in mice. An unexpected observation was that the ASGR also appears to play a role in the uptake of unconjugated phosphorothioate modified ASOs in the liver as evidenced by the loss of activity of GalNAc conjugated and unconjugated ASOs in ASGR knockout mice. Our results provide insights into how backbone charge and chemical composition assist in the binding and internalization of highly polar anionic single stranded oligonucleotides into cells and tissues.


Nucleic Acids Research | 2017

Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes

Michael Tanowitz; Lisa Hettrick; Alexey S Revenko; Garth A. Kinberger; Thazha P. Prakash; Punit P. Seth

Abstract Antisense oligonucleotide (ASO) therapeutics show tremendous promise for the treatment of previously intractable human diseases but to exert their effects on cellular RNA processing they must first cross the plasma membrane by endocytosis. The conjugation of ASOs to a receptor ligand can dramatically increase their entry into certain cells and tissues, as demonstrated by the implementation of N-acetylgalactosamine (GalNAc)-conjugated ASOs for Asialoglycoprotein Receptor (ASGR)-mediated uptake into liver hepatocytes. We compared the internalization and activity of GalNAc-conjugated ASOs and their parents in endogenous ASGR-expressing cells and were able to recapitulate hepatocyte ASO uptake and activity in cells engineered to heterologously express the receptor. We found that the minor receptor subunit, ASGR2, is not required for effective in vitro or in vivo uptake of GalNAc-conjugated ASO and that the major subunit, ASGR1, plays a small but significant role in the uptake of unconjugated phosphorothioate ASOs into hepatocytes. Moreover, our data demonstrates there is a large excess capacity of liver ASGR for the effective uptake of GalNAc–ASO conjugates, suggesting broad opportunities to exploit receptors with relatively moderate levels of expression.


Bioorganic & Medicinal Chemistry Letters | 2016

Conjugation of mono and di-GalNAc sugars enhances the potency of antisense oligonucleotides via ASGR mediated delivery to hepatocytes

Garth A. Kinberger; Thazha P. Prakash; Jinghua Yu; Guillermo Vasquez; Audrey Low; Alfred Chappell; Karsten Schmidt; Heather M. Murray; Hans Gaus; Eric E. Swayze; Punit P. Seth

Antisense oligonucleotides (ASOs) conjugated to trivalent GalNAc ligands show 10-fold enhanced potency for suppressing gene targets expressed in hepatocytes. Trivalent GalNAc is a high affinity ligand for the asialoglycoprotein receptor (ASGR)-a C-type lectin expressed almost exclusively on hepatocytes in the liver. In this communication, we show that conjugation of two and even one GalNAc sugar to single stranded chemically modified ASOs can enhance potency 5-10 fold in mice. Evaluation of the mono- and di-GalNAc ASO conjugates in an ASGR binding assay suggested that chemical features of the ASO enhance binding to the receptor and provide a rationale for the enhanced potency.


Cell | 2012

Single-Stranded siRNAs Activate RNAi in Animals

Walt F. Lima; Thazha P. Prakash; Heather M. Murray; Garth A. Kinberger; Wenyu Li; Alfred Chappell; Cheryl S. Li; Susan F. Murray; Hans Gaus; Punit P. Seth; Eric E. Swayze; Stanley T. Crooke


Journal of Organic Chemistry | 2010

Synthesis and Biophysical Evaluation of 2′,4′-Constrained 2′O-Methoxyethyl and 2′,4′-Constrained 2′O-Ethyl Nucleic Acid Analogues

Punit P. Seth; Guillermo Vasquez; Charles A. Allerson; Andres Berdeja; Hans Gaus; Garth A. Kinberger; Thazha P. Prakash; Michael T. Migawa; Balkrishen Bhat; Eric E. Swayze


Archive | 2007

Oligomeric compounds and compositions for the use in modulation of micrornas

Christine Esau; Eric E. Swayze; Balkrishen Bhat; Garth A. Kinberger

Collaboration


Dive into the Garth A. Kinberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge