Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary A. Clawson is active.

Publication


Featured researches published by Gary A. Clawson.


Journal of Cellular Biochemistry | 2006

Antisense applications for biological control

Wei-Hua Pan; Gary A. Clawson

Although Natures antisense approaches are clearly impressive, this Perspectives article focuses on the experimental uses of antisense reagents (ASRs) for control of biological processes. ASRs comprise antisense oligonucleotides (ASOs), and their catalytically active counterparts ribozymes and DNAzymes, as well as small interfering RNAs (siRNAs). ASOs and ribozymes/DNAzymes target RNA molecules on the basis of Watson‐Crick base pairing in sequence‐specific manner. ASOs generally result in destruction of the target RNA by RNase‐H mediated mechanisms, although they may also sterically block translation, also resulting in loss of protein production. Ribozymes and DNAzymes cleave target RNAs after base pairing via their antisense flanking arms. siRNAs, which contain both sense and antisense regions from a target RNA, can mediate target RNA destruction via RNAi and the RISC, although they can also function at the transcriptional level. A considerable number of ASRs (mostly ASOs) have progressed into clinical trials, although most have relatively long histories in Phase I/II settings. Clinical trial results are surprisingly difficult to find, although few ASRs appear to have yet established efficacy in Phase III levels. Evolution of ASRs has included: (a) Modifications to ASOs to render them nuclease resistant, with analogous modifications to siRNAs being developed; and (b) Development of strategies to select optimal sites for targeting. Perhaps the biggest barrier to effective therapies with ASRs is the “Delivery Problem.” Various liposomal vehicles have been used for systemic delivery with some success, and recent modifications appear to enhance systemic delivery, at least to liver. Various nanoparticle formulations are now being developed which may also enhance delivery. Going forward, topical applications of ASRs would seem to have the best chances for success. In summary, modifications to ASRs to enhance stability, improve targeting, and incremental improvements in delivery vehicles continue to make ASRs attractive as molecular therapeutics, but their advance toward the bedside has been agonizingly slow. J. Cell. Biochem. 98: 14–35, 2006.


Breast Cancer Research and Treatment | 2006

Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells

Nuray Erin; Wei Zhao; John E. Bylander; Gary A. Chase; Gary A. Clawson

Capsaicin-induced inactivation of sensory neurons has been reported to enhance metastasis of a murine breast cancer cell line, specifically enhancing mycocardial metastases. Here we characterized changes in gene expression patterns in primary tumors which developed in capsaicin-treated vs. control mice. We identified a small cohort of genes (17) which all showed significant decreases in expression levels. All of the identified genes have been linked to cell growth, differentiation, and/or cancer progression. Three representative genes, Caspase-7 (an executor of apoptosis), ADAM-10 (A Disintegrin and Metalloprotease), and Elk-3 (a transcriptional repressor of the ternary factor subfamily of the Ets factors) were further investigated. All three showed dramatic downregulation at the protein level in primary tumors from capsaicin-treated animals compared with control (vehicle-treated) animals, and their expression was also lost in cell culture. Elk-3 and Caspase-7 were not expressed in vitro in cultured cell lines, suggesting that their expression was induced by the tumor microenvironment. Loss of Caspase-7 expression can be expected to result in loss of function of apoptotic pathways. At first glance, loss of ADAM-10 expression would be expected to result in decreased invasive capability, due to loss of matrix metalloprotease activity. However, just the opposite appears to be true. We found that ADAM-10 actually hydrolyzes Substance P. Specifically ADAM-10 produces the same growth-inhibitory products from Substance P (i.e., SP (1–7)) that Neprilysin does, so that loss of ADAM-10 expression actually results in loss of production of growth inhibitory peptides from Substance P. Similarly, ADAM-10 also efficiently hydrolyzes Calcitonin Gene-Related Peptide, which may act in concert with Substance P. Finally, overactivity of Ets transcriptional suppressor functions has been linked to inhibition of tumorigenesis (e.g., Erf and Mef), and in addition loss of Elk-3 expression might also be be linked to tumorigenesis via loss of its putative anti-inflammatory activities. There is anecdotal evidence in the literature to indicate that the rest of the down-regulated genes may also contribute to development of a more aggressive phenotype in this breast cancer model.


International Journal of Cancer | 2009

Altered gene expression in breast cancer liver metastases

Nuray Erin; Ning Wang; Ping Xin; Voung Bui; Judith Weisz; Güliz A. Barkan; Wei Zhao; Debra Shearer; Gary A. Clawson

We previously developed a highly aggressive cell line from heart metastases of 4T1 breast carcinoma (designated 4THM), which produced liver metastases (designated 4TLM). In this study, gene array analysis (GAEA) compared gene expression profiles in 4TLM with profiles in 4T1 and 4THM primary tumors. GAEA demonstrated that 4T1 and 4THM tumors differed in about 250 genes. Over 1,000 genes, however, were expressed differently in 4TLM compared with primary tumors. A cohort of 16 genes showed significantly decreased expression in 4THM tumors, which decreased even further in 4TLM. Many of these genes have been implicated in breast cancer, and many are involved in cell adhesion and junctional complexes. Expression of multiple tight and adherence junction proteins was either downregulated or disappeared in 4TLM; downregulation of claudin 4, claudin 7 and γ‐catenin was confirmed by quantitative polymerase chain reaction, immunoblot, and immunocytochemical (ICC) analyses. At the protein level, intact ZO‐1 was also observed in 4T1 tumors, but was not expressed in 4THM or 4TLM tumors. ICC demonstrated expression of γ‐catenin at the plasma membrane with 4T1 tumors, whereas staining appeared to be nuclear/perinuclear in 4THM tumors. Claudin 7 staining was also seen in monocyte/pmacrophage‐like cells in liver around metastatic lesions by ICC, and it appeared that larger 4TLM tumors apparently reexpressed claudin 7 RNA and protein. Our results demonstrate that decreased or abnormal expression of a number of cell adhesion/junctional proteins, including claudin 4, 7, ZO‐1 and γ‐catenin, correlates with liver metastases, and that cell adhesion molecules in the microenvironment are also altered.


Cancer Research | 2007

Systemic Targeting Inhibitor of κB Kinase Inhibits Melanoma Tumor Growth

Jinming Yang; Wei-Hua Pan; Gary A. Clawson; Ann Richmond

Constitutive activation of nuclear factor-kappaB (NF-kappaB) has been directly implicated in tumorigenesis of various cancer types, including melanoma. Inhibitor of kappaB kinase (IKK) functions as a major mediator of NF-kappaB activation. Thus, development of an IKK-specific inhibitor has been a high priority, although it remains unclear whether systemic inhibition of IKK will provide therapeutic benefit. In this study, we show that inhibition of NF-kappaB activity in melanocytes that are persistently expressing an active H-Ras(V12) gene and are deficient in the tumor suppressors inhibitor A of cyclin-dependent kinase 4/alternative reading frame results in reduction of melanoma tumor growth in vivo. This effect is, at least in part, via regulation of NF-kappaB nuclear activation and RelA phosphorylation. Based on this result, we developed a double hammerhead ribozyme long-term expression system to silence either IKKalpha or IKKbeta. The ribozymes were placed in an EBV construct and delivered i.v. to nude mice bearing melanoma lesions, which developed after i.v. injection of H-Ras-transformed melanoma cells. Our in vivo data show that knockdown of endogenous IKKbeta significantly reduces the growth of the melanoma lesions and knockdown of either IKKalpha or IKKbeta prolongs the life span of immunocompetent mice.


RNA | 2001

A selection system for identifying accessible sites in target RNAs.

Wei-Hua Pan; Heidi F. Devlin; Colleen Kelley; Harriet C. Isom; Gary A. Clawson

Although ribozymes offer tremendous potential for posttranscriptionally controlling expression of targeted genes, their utility is often limited by the accessibility of the targeted regions within the RNA transcripts. Here we describe a method that identifies RNA regions that are accessible to oligonucleotides. Based on this selection protocol, we show that construction of hammerhead ribozymes targeted to the identified regions results in catalytic activities that are consistently and substantially greater than those of ribozymes designed on the basis of computer modeling. Identification of accessible sites should also be widely applicable to design of antisense oligonucleotides and DNAzymes.


PLOS ONE | 2012

Circulating Tumor Cells in Melanoma Patients

Gary A. Clawson; Eric T. Kimchi; Susan D. Patrick; Ping Xin; Ramdane Harouaka; Siyang Zheng; Arthur Berg; Todd D. Schell; Kevin F. Staveley-O’Carroll; Rogerio I. Neves; Paul J. Mosca; Diane Thiboutot

Circulating tumor cells (CTCs) are of recognized importance for diagnosis and prognosis of cancer patients. With melanoma, most studies do not show any clear relationship between CTC levels and stage of disease. Here, CTCs were enriched (∼400X) from blood of melanoma patients using a simple centrifugation device (OncoQuick), and 4 melanocyte target RNAs (TYR, MLANA, MITF, and MIF) were quantified using QPCR. Approximately one-third of melanoma patients had elevated MIF and MLANA transcripts (p<0.0001 and p<0.001, respectively) compared with healthy controls. In contrast, healthy controls had uniformly higher levels of TYR and MITF than melanoma patients (p<0.0001). There was a marked shift of leukocytes into the CTC-enriched fractions (a 430% increase in RNA recovery, p<0.001), and no relationship between CTC levels and stage of disease was found. CTCs were captured on microfabricated filters and cultured. Captured melanoma CTCs were large cells, and consisted of 2 subpopulations, based on immunoreactivity. One subpopulation (∼50%) stained for both pan-cytokeratin (KRT) markers and the common leukocyte marker CD-45, whereas the second subpopulation stained for only KRT. Since similar cells are described in many cancers, we also examined blood from colorectal and pancreatic cancer patients. We observed analogous results, with most captured CTCs staining for both CD-45/KRT markers (and for the monocyte differentiation marker CD-14). Our results suggest that immature melanocyte-related cells (expressing TYR and MITF RNA) may circulate in healthy controls, although they are not readily detectable without considerable enrichment. Further, as early-stage melanomas develop, immature melanocyte migration into the blood is somehow curtailed, whereas a significant proportion of patients develop elevated CTC levels (based on MIF and MLANA RNAs). The nature of the captured CTCs is consistent with literature describing leukocyte/macrophage-tumor cell fusion hybrids, and their role in metastatic progression.


Cancer Investigation | 1996

Protease Inhibitors and Carcinogenesis: A Review

Gary A. Clawson

This brief review article deals with the subject of anticarcinogenic activity of protease inhibitors (PI). Three basic premises are made: (1) Although PI are prevalent constituents of dietary staples such as soy products, which have been epidemiologically associated with reduced cancer incidences at multiple target sites, they are unlikely to be the active anticarcinogenic entities. Cooked soy products, which are devoid of PI activity, are equally as effective at reducing cancer development as raw soy products. Isoflavones are likely to represent major chemopreventive agents in soy, although other constituents may well contribute. (2) Although supplementation of diets with PI (natural or synthetic), or direct topical administration, results in lower cancer incidences in many experimental models in vivo, this effect appears to be indirect. Dietary PI are, in general, poorly absorbed from the GI tract, and never reach target organs in any measurable quantity. The most attractive hypothesis is that dietary PI could induce synthesis and distribution of endogenous PI (acute-phase reactants), which have widespread effects on cell growth and behavior. Effects of topical administration of PI also encompass prominent anti-inflammatory effects. (3) A spectrum of PI inhibit in vitro transformation induced by a variety of carcinogenic agents. Their effects can be grouped into three basic categories, affecting: (a) signal transduction pathways; (b) DNA repair processes; and (c) nuclear proteases. I suggest that the nuclear multicatalytic protease activity, in particular the chymotrypsin-like activity, represents an important cellular target for which considerable anecdotal support can be garnered.


Regulatory Peptides | 2008

Vagotomy enhances experimental metastases of 4THMpc breast cancer cells and alters substance P level.

Nuray Erin; Güliz A. Barkan; John F. Harms; Gary A. Clawson

We have previously demonstrated that inactivation of capsaicin-sensitive sensory neurons enhances lung and heart metastases of breast carcinoma. Because a significant part of sensory innervation of lung tissue is supplied by the vagus nerve, we here examined the effects of unilateral mid-cervical vagotomy in the metastases of 4THMpc breast carcinoma and tissue Substance P (SP) levels. Balb-c mice were injected orthotopically with 4THMpc cells 1 week after vagotomy. Animals were sacrificed 27-30 days after injection of 4THMpc cells and the extent of metastases was determined. Unilateral vagotomy, right or left significantly increased the lung, liver and kidney metastases without altering the growth rate of the primary tumor. Heart metastases were increased only following left vagotomy. The changes in SP levels were somewhat surprising such that vagotomy actually increased while sham-operation decreased SP levels in lung. The effect of sham-operation was reversed by unilateral vagotomy demonstrating that vagal activity decreases total SP levels in the lung. Increased SP levels might be due to decreased degradation of the peptide. Presence of the tumor markedly increased SP level in the lung, which was more prominent in vagotomized animals. These results provide evidence that vagal activity may protect against metastatic disease.


Journal of Cellular Biochemistry | 2008

Intracellular localization of the tumor suppressor HtrA1/Prss11 and its association with HPV16 E6 and E7 proteins.

Gary A. Clawson; Vuong Bui; Ping Xin; Ning Wang; Wei-Hua Pan

We have a long‐standing interest in a nuclear protease which appears to be involved in carcinogenesis. We recently identified the protease as high temperature requirement factor A 1 (HtrA1), also known as Prss11, which is member of an oxidative stress‐response family of proteases. HtrA1 has been classified as a secreted protease involved in TGFβ signaling, but recent work has shown HtrA1 to be a tumor suppressor. Here we show that processed forms of HtrA1 are found intracellularly and intranuclearly, and the active intranuclear form of HtrA1 shows an ∼Mr 29,000. Further, expression of HPV E6/E7 proteins is associated with a post‐transcriptional up‐regulation of HtrA1 (most notably the nuclear form), and HtrA1 is found associated with both HPV E6 and E7 proteins. J. Cell. Biochem. 105: 81–88, 2008.


Plant Physiology | 1993

The Major Nucleoside Triphosphatase in Pea (Pisum sativum L.) Nuclei and in Rat Liver Nuclei Share Common Epitopes Also Present in Nuclear Lamins

Chii-Gong Tong; M. Dauwalder; Gary A. Clawson; Christine L. Hatem; S. J. Roux

The major nucleoside triphosphatase (NTPase) activities in mammalian and pea (Pisum sativum L.) nuclei are associated with enzymes that are very similar both biochemically and immunochemically. The major NTPase from rat liver nuclei appears to be a 46-kD enzyme that represents the N-terminal portion of lamins A and C, two lamina proteins that apparently arise from the same gene by alternate splicing. Monoclonal antibody (MAb) G2, raised to human lamin C, both immunoprecipitates the major (47 kD) NTPase in pea nuclei and recognizes it in western blot analyses. A polyclonal antibody preparation raised to the 47-kD pea NTPase (pc480) reacts with the same lamin bands that are recognized by MAb G2 in mammalian nuclei. The pc480 antibodies also bind to the same lamin-like bands in pea nuclear envelope-matrix preparations that are recognized by G2 and three other MAbs known to bind to mammalian lamins. In immunofluorescence assays, pc480 and anti-lamin antibodies stain both cytoplasmic and nuclear antigens in plant cells, with slightly enhanced staining along the periphery of the nuclei. These results indicate that the pea and rat liver NTPases are structurally similar and that, in pea nuclei as in rat liver nuclei, the major NTPase is probably derived from a lamin precursor by proteolysis.

Collaboration


Dive into the Gary A. Clawson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei-Hua Pan

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Ping Xin

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

C.H. Woo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane Button

University of California

View shared research outputs
Top Co-Authors

Avatar

Diane Thiboutot

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Judith Weisz

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Catharine M. Benedict

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Gail L. Matters

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge