Gary A. Dudley
University of Georgia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gary A. Dudley.
Neurology | 2006
Bruce H. Dobkin; David F. Apple; Hugues Barbeau; M. Basso; Andrea L. Behrman; D. Deforge; John F. Ditunno; Gary A. Dudley; Robert Elashoff; Lisa Fugate; Susan J. Harkema; Michael Saulino; Michael Scott
Objective: To compare the efficacy of step training with body weight support on a treadmill (BWSTT) with over-ground practice to the efficacy of a defined over-ground mobility therapy (CONT) in patients with incomplete spinal cord injury (SCI) admitted for inpatient rehabilitation. Methods: A total of 146 subjects from six regional centers within 8 weeks of SCI were entered in a single-blinded, multicenter, randomized clinical trial (MRCT). Subjects were graded on the American Spinal Injury Association Impairment Scale (ASIA) as B, C, or D with levels from C5 to L3 and had a Functional Independence Measure for locomotion (FIM-L) score <4. They received 12 weeks of equal time of BWSTT or CONT. Primary outcomes were FIM-L for ASIA B and C subjects and walking speed for ASIA C and D subjects 6 months after SCI. Results: No significant differences were found at entry between treatment groups or at 6 months for FIM-L (n = 108) or walking speed and distance (n = 72). In the upper motor neuron (UMN) subjects, 35% of ASIA B, 92% of ASIA C, and all ASIA D subjects walked independently. Velocities for UMN ASIA C and D subjects were not significantly different for BWSTT (1.1 ± 0.6 m/s, n = 30) and CONT (1.1 ± 0.7, n = 25) groups. Conclusions: The physical therapy strategies of body weight support on a treadmill and defined overground mobility therapy did not produce different outcomes. This finding was partly due to the unexpectedly high percentage of American Spinal Injury Association C subjects who achieved functional walking speeds, irrespective of treatment. The results provide new insight into disability after incomplete spinal cord injury and affirm the importance of the multicenter, randomized clinical trial to test rehabilitation strategies.
European Journal of Applied Physiology | 1999
Michael J. Castro; David F. Apple; Ellen A. Hillegass; Gary A. Dudley
Abstract In this study we examined the influence of complete spinal cord injury (SCI) on affected skeletal muscle morphology within 6 months of SCI. Magnetic resonance (MR) images of the leg and thigh were taken as soon as patients were clinically stable, on average 6 weeks post injury, and 11 and 24 weeks after SCI to assess average muscle cross-sectional area (CSA). MR images were also taken from nine able-bodied controls at two time points separated from one another by 18 weeks. The controls showed no change in any variable over time. The patients showed differential atrophy (P = 0.0001) of the ankle plantar or dorsi flexor muscles. The average CSA of m. gastrocnemius and m. soleus decreased by 24% and 12%, respectively (P = 0.0001). The m. tibialis anterior CSA showed no change (P = 0.3644). As a result of this muscle-specific atrophy, the ratio of average CSA of m. gastrocnemius to m. soleus, m. gastrocnemius to m. tibialis anterior and m. soleus to m. tibialis anterior declined (P = 0.0001). The average CSA of m, quadriceps femoris, the hamstring muscle group and the adductor muscle group decreased by 16%, 14% and 16%, respectively (P ≤ 0.0045). No differential atrophy was observed among these thigh muscle groups, thus the ratio of their CSAs did not change (P = 0.6210). The average CSA of atrophied skeletal muscle in the patients was 45–80% of that of age- and weight-matched able-bodied controls 24 weeks after injury. In conclusion, the results of this study suggest that there is marked loss of contractile protein early after SCI which differs among affected skeletal muscles. While the mechanism(s) responsible for loss of muscle size are not clear, it is suggested that the development of muscular imbalance as well as diminution of muscle mass would compromise force potential early after SCI.
Spinal Cord | 2004
Christopher P. Elder; David F. Apple; C S Bickel; R A Meyer; Gary A. Dudley
Study design: Survey.Objective: Determine intramuscular fat (IMF) in affected skeletal muscle after complete spinal cord injury using a novel analysis method and determine the correlation of IMF to plasma glucose or plasma insulin during an oral glucose tolerance test.Setting: General community of Athens, GA, USA.Methods: A total of 12 nonexercise-trained complete spinal cord injured (SCI) persons (10 males and two females 40±12 years old (mean±SD), range 26–71 years, and 8±5 years post SCI) and nine nonexercise-trained nondisabled (ND) controls 29±9 years old, range 23–51 years, matched for height, weight, and BMI, had T1 magnetic resonance images of their thighs taken and underwent an oral glucose tolerance test (OGTT) after giving consent.Results: Average skeletal muscle cross-sectional area (CSA) (mean±SD) was 58.6±21.6 cm2 in spinal cord subjects and 94.1±32.5 cm2 in ND subjects. Average IMF CSA was 14.5±6.0 cm2 in spinal cord subjects and 4.7±2.5 cm2 in nondisabled subjects, resulting in an almost four-fold difference in IMF percentage of 17.3±4.4% in spinal cord subjects and 4.6±2.6% in nondisabled subjects. The 60, 90 and 120 min plasma glucose or plasma insulin were higher in the SCI group. IMF (absolute and %) was related to the 90 or 120 min plasma glucose or plasma insulin (r 2=0.71–0.40).Conclusions: IMF is a good predictor of plasma glucose during an OGTT and may be a contributing factor to the onset of impaired glucose tolerance and type II diabetes, especially in SCI. In addition, reports of skeletal muscle CSA should be corrected for IMF.
Neurorehabilitation and Neural Repair | 2003
Bruce H. Dobkin; David F. Apple; Hugues Barbeau; Michele Basso; Andrea L. Behrman; Dan Deforge; John F. Ditunno; Gary A. Dudley; Robert Elashoff; Lisa Fugate; Susan J. Harkema; Michael Saulino; Michael Scott
The authors describe the rationale and methodology for the first prospective, multicenter, randomized clinical trial (RCT) of a task-oriented walking intervention for subjects during early rehabilitation for an acute traumatic spinal cord injury (SCI). The experimental strategy, body weight-supported treadmill training (BWSTT), allows physical therapists to systematically train patients to walk on a treadmill at increasing speeds typical of community ambulation with increasing weight bearing. The therapists provide verbal and tactile cues to facilitate the kinematic, kinetic, and temporal features of walking. Subjects were randomly assigned to a conventional therapy program for mobility versus the same intensity and duration of a combination of BWSTT and over-ground locomotor retraining. Subjects had an incomplete SCI (American Spinal Injury Association grades B, C, and D) from C-4 to T-10 (upper motoneuron group) or from T-11 to L-3 (lower motoneuron group). Within 8 weeks of a SCI, 146 subjects were entered for 12 weeks of intervention. The 2 single-blinded primary outcome measures are the level of independence for ambulation and, for those who are able to walk, the maximal speed for walking 50 feet, tested 6 and 12 months after randomization. The trials methodology offers a model for the feasibility of translating neuroscientific experiments into a RCT to develop evidence-based rehabilitation practices.
Circulation Research | 1996
Americo Simonini; Carlin S. Long; Gary A. Dudley; Ping Yue; Jill McElhinny; Barry M. Massie
In patients with congestive heart failure, skeletal muscle is characterized by a smaller proportion of slow-twitch oxidative fibers and reduced oxidative enzyme activity. However, whether these changes result from disuse or occur as a direct consequence of heart failure is unresolved. To address this issue, 18 rats with heart failure 8 weeks after left coronary artery ligation and 13 sham-operated control rats underwent quantification of locomotor activity by a photocell activation technique, measurements of hemodynamics and infarct size, histochemical and morphological analyses of the soleus and plantaris muscles, and Northern analyses of muscle contractile protein and oxidative enzyme mRNA expression. Although the rats with heart failure had elevated left ventricular end-diastolic pressures (24.1 +/- 2.6 mm Hg) and a mean infarct size of 35.1 +/- 4.1%, activity levels were similar to those found in the sham-operated rats (3849 +/- 304 versus 3526 +/- 130 counts per hour). With heart failure, there was a significant reduction of type I fibers in the soleus muscle and type IIa fibers in the plantaris muscle, with corresponding increases in intermediate staining of type IIab fibers in both muscles. This was associated with a 17% decrease in citrate synthase activity in both the soleus and plantaris muscles (26.2 +/- 1.6 versus 30.7 +/- 3.4 and 29.1 +/- 2.4 versus 35.7 +/- 3.4 mumol/L per minute per gram, respectively [P < .05]). In the soleus muscle, mRNA for both beta-myosin heavy chains and cytochrome C oxidase III (normalized to 18S RNA) was reduced (0.27 +/- 0.02 versus 0.65 +/- 0.02 and 0.23 +/- 0.04 versus 0.64 +/- 0.02 U), whereas the messages for IIx and IIb myosin heavy chains were increased. A similar decrease in messages for cytochrome oxidase and the primary myosin isoform was observed in the plantaris muscle. Both soleus beta-myosin heavy chain and cytochrome C oxidase expression show significant inverse relationships to left ventricular end-diastolic pressure and infarct size. In contrast, there was no relationship between either beta-myosin heavy chain or cytochrome C oxidase expression and locomotor activity. These results indicate that in rats heart failure produces changes in skeletal muscle gene expression at the pretranslational level that cannot be explained by inactivity.
Journal of the American College of Cardiology | 1996
Barry M. Massie; Americo Simonini; Puneet Sahgal; Lauren Wells; Gary A. Dudley
OBJECTIVES The present study was undertaken to further characterize changes in skeletal muscle morphology and histochemistry in congestive heart failure and to determine the relation of these changes to abnormalities of systemic and local muscle exercise capacity. BACKGROUND Abnormalities of skeletal muscle appear to play a role in the limitation of exercise capacity in congestive heart failure, but information on the changes in muscle morphology and biochemistry and their relation to alterations in muscle function is limited. METHODS Eighteen men with predominantly mild to moderate congestive heart failure (mean +/- SEM New York Heart Association functional class 2.6 +/- 0.2, ejection fraction 24 +/- 2%) and eight age- and gender-matched sedentary control subjects underwent measurements of peak systemic oxygen consumption (VO2) during cycle ergometry, resistance to fatigue of the quadriceps femoris muscle group and biopsy of the vastus lateralis muscle. RESULTS Peak VO2 and resistance to fatigue were lower in the patients with heart failure than in control subjects (15.7 +/- 1.2 vs. 25.1 +/- 1.5 ml/min-kg and 63 +/- 2% vs. 85 +/- 3%, respectively, both p < 0.001). Patients had a lower proportion of slow twitch, type I fibers than did control subjects (36 +/- 3% vs. 46 +/- 5%, p = 0.048) and a higher proportion of fast twitch, type IIab fibers (18 +/- 3% vs. 7 +/- 2%, p = 0.004). Fiber cross-sectional area was smaller, and single-fiber succinate dehydrogenase activity, a mitochondrial oxidative marker, was lower in patients (both p < or = 0.034). Likewise, the ratio of average fast twitch to slow twitch fiber cross-sectional area was lower in patients (0.780 +/- 0.06 vs. 1.05 +/- 0.08, p = 0.019). Peak VO2 was strongly related to integrated succinate dehydrogenase activity in patients (r = 0.896, p = 0.001). Peak VO2, resistance to fatigue and strength also correlated significantly with several measures of fiber size, especially of fast twitch fibers, in patients. None of the skeletal muscle characteristics examined correlated with exercise capacity in control subjects. CONCLUSIONS These results indicate that congestive heart failure is associated with changes in the characteristics of skeletal muscle and local as well as systemic exercise performance. There are fewer slow twitch fibers, smaller fast twitch fibers and lower succinate dehydrogenase activity. The latter finding suggests that mitochondrial content of muscle is reduced in heart failure and that impaired aerobic-oxidative capacity may play a role in the limitation of systemic exercise capacity.
European Journal of Applied Physiology | 1999
Gary A. Dudley; Michael J. Castro; S. Rogers; David F. Apple
Abstract This study tested that hypothesis that skeletal muscle within a year of spinal cord injury (SCI) would respond to intermittent high force loading by showing an increase in size. Three males about 46 weeks post clinically complete SCI underwent surface electrical stimulation of their left or right m. quadriceps femoris 2 days per week for 8 weeks to evoke 4 sets of ten isometric or dynamic actions each session. Conditioning increased average cross-sectional area of m. quadriceps femoris, assessed by magnetic resonance imaging, by 20 ± 1% (p = 0.0103). This reversed 48 weeks of atrophy such that m. quadriceps femoris 54 weeks after SCI was the same size as when the patients were first studied 6 weeks after injury. The results suggest that skeletal muscle is remarkably responsive to intermittent, high force loading after almost one year of little if any contractile activity.
Journal of Bone and Mineral Research | 2003
Christopher M. Modlesky; Sharmila Majumdar; Anita Narasimhan; Gary A. Dudley
Using magnetic resonance imaging, men with spinal cord injury (n = 10) were found to have fewer trabeculae that were spaced further apart in the knee than able‐bodied controls of similar age, height, and weight (n = 8). The deteriorated trabecular bone microarchitecture may contribute to the increased fracture incidence after injury.
Respiration Physiology | 1994
Scott K. Powers; David S. Criswell; John M. Lawler; Daniel Martin; Li Ji Li Li Ji; Robert A. Herb; Gary A. Dudley
We examined the relationship between the intensity and duration of exercise training and the up-regulation of diaphragmatic oxidative and antioxidant enzyme activities. Nine groups of rats exercised for 10 weeks (4 days/week). Groups of animals exercised at three intensities (low, moderate, and high); at each exercise intensity, a group of animals ran at one of three exercise durations (30, 60, and 90 min/day). Sedentary animals served as controls. Muscle oxidative capacity was assessed by citrate synthase (CS) activity while antioxidant capacity was evaluated by total superoxide dismutase (SOD) and total glutathione peroxidase (GPX) activities. All intensities and durations of exercise training promoted significant (P < 0.05) increases in costal diaphragmatic CS, SOD, and GPX activities. Increases in costal CS, SOD, and GPX activity were independent of the exercise intensity and duration. High and moderate intensity exercise of 90 min duration significantly elevated (P < 0.05) crural diaphragm CS activity. Further, high and moderate intensity exercise of durations > or = 60 min promoted significant (P < 0.05) increases in crural diaphragm SOD activities. Exercise did not influence (P > 0.05) crural diaphragm GPX activity. We conclude that the training threshold for up-regulation of oxidative and antioxidant enzyme activities differs between the costal and crural diaphragm.
European Journal of Applied Physiology | 1997
Michael S. Conley; Michael H. Stone; Michael Nimmons; Gary A. Dudley
Abstract This study examined hypertrophy after head extension resistance training to assess which muscles of the complicated cervical neuromuscular system were used in this activity. We also determined if conventional resistance exercises, which are likely to evoke isometric action of the neck, induce generalized hypertrophy of the cervical muscle. Twenty-two active college students were studied. [mean (SE) age, weight and height: 21 (1) years, 71 (4) kg and 173 (3) cm, respectively]. Subjects were assigned to one of three groups: RESX (head extension exercise and other resistance exercises), RES (resistance exercises without specific neck exercise), or CON (no training). Groups RESX (n = 8) and RES (n = 6) trained 3 days/week for 12 weeks with large-muscle mass exercises (squat, deadlift, push press, bent row and mid-thigh pull). Group RESX also performed three sets of ten repetitions of a head extension exercise 3 days/week with a load equal to the 3 × 10 repetition maximum (RM). Group CON (n = 8) was a control group. The cross-sectional area (CSA) of nine individual muscles or muscle groups was determined by magnetic resonance imaging (MRI) of the cervical region. The CSA data were averaged over four contiguous transaxial slices in which all muscles of interest were visible. The 3 × 10 RM for the head extension exercise increased for RESX after training [from 17.9 (1.0) to 23.9 (1.4) kg, P < 0.05] but not for RES [from 17.6 (1.4) to 17.7 (1.9)␣kg] or CON [from 10.1 (2.2) to 10.3 (2.1) kg]. RESX showed an increase in total neck muscle CSA after training [from 19.5 (3.0) to 22.0 (3.6) cm2, P < 0.05], but RES and CON did not [from 19.6 (2.9) to 19.7 (2.9)␣cm2 and 17.0 (2.5) to 17.0 (2.4) cm2, respectively]. This hypertrophy for RESX was due mainly to increases in CSA of 23.9 (3.2), 24.0 (5.8), and 24.9 (5.3)% for the splenius capitis, and semispinalis capitis and cervicis muscles, respectively. The lack of generalized neck muscle hypertrophy in RES was not due to insufficient training. For example, the CSA of their quadriceps femoris muscle group, as assessed by MRI, increased by 7 (1)% after this short-term training (P < 0.05). The results suggest that: (1) the splenius capitis, and semispinalis capitis and cervicis muscles are mainly responsible for head extension; (2) short-term resistance training does not provide a sufficient stimulus to evoke neck muscle hypertrophy unless specific neck exercises are performed; and (3) the postural role of head extensors provides modest loading in bipeds.