Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary D. Bader is active.

Publication


Featured researches published by Gary D. Bader.


Nature | 2002

Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry

Yuen Ho; Albrecht Gruhler; Adrian Heilbut; Gary D. Bader; Lynda Moore; Sally-Lin Adams; Anna Millar; Paul D. Taylor; Keiryn L. Bennett; Kelly Boutilier; Lingyun Yang; Cheryl Wolting; Ian M. Donaldson; Søren Schandorff; Juanita Shewnarane; Mai Vo; Joanne Taggart; Marilyn Goudreault; Brenda Muskat; Cris Alfarano; Danielle Dewar; Zhen Lin; Katerina Michalickova; Andrew Willems; Holly Sassi; Peter Aagaard Nielsen; Karina Juhl Rasmussen; Jens R. Andersen; Lene E. Johansen; Lykke H. Hansen

The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein–protein interaction maps has relied on the yeast two-hybrid system, which detects binary interactions through activation of reporter gene expression. With the advent of ultrasensitive mass spectrometric protein identification methods, it is feasible to identify directly protein complexes on a proteome-wide scale. Here we report, using the budding yeast Saccharomyces cerevisiae as a test case, an example of this approach, which we term high-throughput mass spectrometric protein complex identification (HMS-PCI). Beginning with 10% of predicted yeast proteins as baits, we detected 3,617 associated proteins covering 25% of the yeast proteome. Numerous protein complexes were identified, including many new interactions in various signalling pathways and in the DNA damage response. Comparison of the HMS-PCI data set with interactions reported in the literature revealed an average threefold higher success rate in detection of known complexes compared with large-scale two-hybrid studies. Given the high degree of connectivity observed in this study, even partial HMS-PCI coverage of complex proteomes, including that of humans, should allow comprehensive identification of cellular networks.


Nature Protocols | 2007

Integration of biological networks and gene expression data using Cytoscape

Melissa S Cline; Michael Smoot; Ethan Cerami; Allan Kuchinsky; Nerius Landys; Christopher T. Workman; Rowan H. Christmas; Iliana Avila-Campilo; Michael L. Creech; Benjamin E. Gross; Kristina Hanspers; Ruth Isserlin; R. Kelley; Sarah Killcoyne; Samad Lotia; Steven Maere; John H. Morris; Keiichiro Ono; Vuk Pavlovic; Alexander R. Pico; Aditya Vailaya; Peng-Liang Wang; Annette Adler; Bruce R. Conklin; Leroy Hood; Martin Kuiper; Chris Sander; Ilya Schmulevich; Benno Schwikowski; Guy Warner

Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.


Science | 2010

The Genetic Landscape of a Cell

Michael Costanzo; Anastasia Baryshnikova; Jeremy Bellay; Yungil Kim; Eric D. Spear; Carolyn S. Sevier; Huiming Ding; Judice L. Y. Koh; Kiana Toufighi; Jeany Prinz; Robert P. St.Onge; Benjamin VanderSluis; Taras Makhnevych; Franco J. Vizeacoumar; Solmaz Alizadeh; Sondra Bahr; Renee L. Brost; Yiqun Chen; Murat Cokol; Raamesh Deshpande; Zhijian Li; Zhen Yuan Lin; Wendy Liang; Michaela Marback; Jadine Paw; Bryan Joseph San Luis; Ermira Shuteriqi; Amy Hin Yan Tong; Nydia Van Dyk; Iain M. Wallace

Making Connections Genetic interaction profiles highlight cross-connections between bioprocesses, providing a global view of cellular pleiotropy, and enable the prediction of genetic network hubs. Costanzo et al. (p. 425) performed a pairwise fitness screen covering approximately one-third of all potential genetic interactions in yeast, examining 5.4 million gene-gene pairs and generating quantitative profiles for ∼75% of the genome. Of the pairwise interactions tested, about 3% of the genes investigated interact under the conditions tested. On the basis of these data, a reference map for the yeast genetic network was created. A genome-wide interaction map of yeast identifies genetic interactions, networks, and function. A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Nucleic Acids Research | 2010

The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function

David Warde-Farley; Sylva Donaldson; Ovi Comes; Khalid Zuberi; Rashad Badrawi; Pauline Chao; Max Franz; Chris Grouios; Farzana Kazi; Christian Tannus Lopes; Anson Maitland; Jason Montojo; Quentin Shao; George Wright; Gary D. Bader; Quaid Morris

GeneMANIA (http://www.genemania.org) is a flexible, user-friendly web interface for generating hypotheses about gene function, analyzing gene lists and prioritizing genes for functional assays. Given a query list, GeneMANIA extends the list with functionally similar genes that it identifies using available genomics and proteomics data. GeneMANIA also reports weights that indicate the predictive value of each selected data set for the query. Six organisms are currently supported (Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, Homo sapiens and Saccharomyces cerevisiae) and hundreds of data sets have been collected from GEO, BioGRID, Pathway Commons and I2D, as well as organism-specific functional genomics data sets. Users can select arbitrary subsets of the data sets associated with an organism to perform their analyses and can upload their own data sets to analyze. The GeneMANIA algorithm performs as well or better than other gene function prediction methods on yeast and mouse benchmarks. The high accuracy of the GeneMANIA prediction algorithm, an intuitive user interface and large database make GeneMANIA a useful tool for any biologist.


Nature | 2014

A draft map of the human proteome

Min Sik Kim; Sneha M. Pinto; Derese Getnet; Raja Sekhar Nirujogi; Srikanth S. Manda; Raghothama Chaerkady; Dhanashree S. Kelkar; Ruth Isserlin; Shobhit Jain; Joji Kurian Thomas; Babylakshmi Muthusamy; Pamela Leal-Rojas; Praveen Kumar; Nandini A. Sahasrabuddhe; Lavanya Balakrishnan; Jayshree Advani; Bijesh George; Santosh Renuse; Lakshmi Dhevi N. Selvan; Arun H. Patil; Vishalakshi Nanjappa; Aneesha Radhakrishnan; Samarjeet Prasad; Tejaswini Subbannayya; Rajesh Raju; Manish Kumar; Sreelakshmi K. Sreenivasamurthy; Arivusudar Marimuthu; Gajanan Sathe; Sandip Chavan

The availability of human genome sequence has transformed biomedical research over the past decade. However, an equivalent map for the human proteome with direct measurements of proteins and peptides does not exist yet. Here we present a draft map of the human proteome using high-resolution Fourier-transform mass spectrometry. In-depth proteomic profiling of 30 histologically normal human samples, including 17 adult tissues, 7 fetal tissues and 6 purified primary haematopoietic cells, resulted in identification of proteins encoded by 17,294 genes accounting for approximately 84% of the total annotated protein-coding genes in humans. A unique and comprehensive strategy for proteogenomic analysis enabled us to discover a number of novel protein-coding regions, which includes translated pseudogenes, non-coding RNAs and upstream open reading frames. This large human proteome catalogue (available as an interactive web-based resource at http://www.humanproteomemap.org) will complement available human genome and transcriptome data to accelerate biomedical research in health and disease.


Nature Methods | 2012

A travel guide to Cytoscape plugins

Rintaro Saito; Michael Smoot; Keiichiro Ono; Johannes Ruscheinski; Peng Liang Wang; Samad Lotia; Alexander R. Pico; Gary D. Bader; Trey Ideker

Cytoscape is open-source software for integration, visualization and analysis of biological networks. It can be extended through Cytoscape plugins, enabling a broad community of scientists to contribute useful features. This growth has occurred organically through the independent efforts of diverse authors, yielding a powerful but heterogeneous set of tools. We present a travel guide to the world of plugins, covering the 152 publicly available plugins for Cytoscape 2.5–2.8. We also describe ongoing efforts to distribute, organize and maintain the quality of the collection.


PLOS ONE | 2010

Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation

Daniele Merico; Ruth Isserlin; Oliver Stueker; Andrew Emili; Gary D. Bader

Background Gene-set enrichment analysis is a useful technique to help functionally characterize large gene lists, such as the results of gene expression experiments. This technique finds functionally coherent gene-sets, such as pathways, that are statistically over-represented in a given gene list. Ideally, the number of resulting sets is smaller than the number of genes in the list, thus simplifying interpretation. However, the increasing number and redundancy of gene-sets used by many current enrichment analysis software works against this ideal. Principal Findings To overcome gene-set redundancy and help in the interpretation of large gene lists, we developed “Enrichment Map”, a network-based visualization method for gene-set enrichment results. Gene-sets are organized in a network, where each set is a node and edges represent gene overlap between sets. Automated network layout groups related gene-sets into network clusters, enabling the user to quickly identify the major enriched functional themes and more easily interpret the enrichment results. Conclusions Enrichment Map is a significant advance in the interpretation of enrichment analysis. Any research project that generates a list of genes can take advantage of this visualization framework. Enrichment Map is implemented as a freely available and user friendly plug-in for the Cytoscape network visualization software (http://baderlab.org/Software/EnrichmentMap/).


Nucleic Acids Research | 2011

Pathway Commons, a web resource for biological pathway data

Ethan Cerami; Benjamin Gross; Emek Demir; Igor Rodchenkov; Özgün Babur; Nadia Anwar; Nikolaus Schultz; Gary D. Bader; Chris Sander

Pathway Commons (http://www.pathwaycommons.org) is a collection of publicly available pathway data from multiple organisms. Pathway Commons provides a web-based interface that enables biologists to browse and search a comprehensive collection of pathways from multiple sources represented in a common language, a download site that provides integrated bulk sets of pathway information in standard or convenient formats and a web service that software developers can use to conveniently query and access all data. Database providers can share their pathway data via a common repository. Pathways include biochemical reactions, complex assembly, transport and catalysis events and physical interactions involving proteins, DNA, RNA, small molecules and complexes. Pathway Commons aims to collect and integrate all public pathway data available in standard formats. Pathway Commons currently contains data from nine databases with over 1400 pathways and 687,000 interactions and will be continually expanded and updated.


Bioinformatics | 2010

Cytoscape Web

Christian Tannus Lopes; Max Franz; Farzana Kazi; Sylva Donaldson; Quaid Morris; Gary D. Bader

Summary: Cytoscape Web is a web-based network visualization tool–modeled after Cytoscape–which is open source, interactive, customizable and easily integrated into web sites. Multiple file exchange formats can be used to load data into Cytoscape Web, including GraphML, XGMML and SIF. Availability and Implementation: Cytoscape Web is implemented in Flex/ActionScript with a JavaScript API and is freely available at http://cytoscapeweb.cytoscape.org/ Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Nature Biotechnology | 2010

The BioPAX community standard for pathway data sharing

Emek Demir; Michael P. Cary; Suzanne M. Paley; Ken Fukuda; Christian Lemer; Imre Vastrik; Guanming Wu; Peter D'Eustachio; Carl F. Schaefer; Joanne S. Luciano; Frank Schacherer; Irma Martínez-Flores; Zhenjun Hu; Verónica Jiménez-Jacinto; Geeta Joshi-Tope; Kumaran Kandasamy; Alejandra López-Fuentes; Huaiyu Mi; Elgar Pichler; Igor Rodchenkov; Andrea Splendiani; Sasha Tkachev; Jeremy Zucker; Gopal Gopinath; Harsha Rajasimha; Ranjani Ramakrishnan; Imran Shah; Mustafa Syed; Nadia Anwar; Özgün Babur

Biological Pathway Exchange (BioPAX) is a standard language to represent biological pathways at the molecular and cellular level and to facilitate the exchange of pathway data. The rapid growth of the volume of pathway data has spurred the development of databases and computational tools to aid interpretation; however, use of these data is hampered by the current fragmentation of pathway information across many databases with incompatible formats. BioPAX, which was created through a community process, solves this problem by making pathway data substantially easier to collect, index, interpret and share. BioPAX can represent metabolic and signaling pathways, molecular and genetic interactions and gene regulation networks. Using BioPAX, millions of interactions, organized into thousands of pathways, from many organisms are available from a growing number of databases. This large amount of pathway data in a computable form will support visualization, analysis and biological discovery.

Collaboration


Dive into the Gary D. Bader's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emek Demir

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniele Merico

The Centre for Applied Genomics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge