Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary F. Lewis is active.

Publication


Featured researches published by Gary F. Lewis.


Circulation Research | 2005

New Insights Into the Regulation of HDL Metabolism and Reverse Cholesterol Transport

Gary F. Lewis; Daniel J. Rader

The metabolism of high-density lipoproteins (HDL), which are inversely related to risk of atherosclerotic cardiovascular disease, involves a complex interplay of factors regulating HDL synthesis, intravascular remodeling, and catabolism. The individual lipid and apolipoprotein components of HDL are mostly assembled after secretion, are frequently exchanged with or transferred to other lipoproteins, are actively remodeled within the plasma compartment, and are often cleared separately from one another. HDL is believed to play a key role in the process of reverse cholesterol transport (RCT), in which it promotes the efflux of excess cholesterol from peripheral tissues and returns it to the liver for biliary excretion. This review will emphasize 3 major evolving themes regarding HDL metabolism and RCT. The first theme is that HDL is a universal plasma acceptor lipoprotein for cholesterol efflux from not only peripheral tissues but also hepatocytes, which are a major source of cholesterol efflux to HDL. Furthermore, although efflux of cholesterol from macrophages represents only a tiny fraction of overall cellular cholesterol efflux, it is the most important with regard to atherosclerosis, suggesting that it be specifically termed macrophage RCT. The second theme is the critical role that intravascular remodeling of HDL by lipid transfer factors, lipases, cell surface receptors, and non-HDL lipoproteins play in determining the ultimate metabolic fate of HDL and plasma HDL-c concentrations. The third theme is the growing appreciation that insulin resistance underlies the majority of cases of low HDL-c in humans and the mechanisms by which insulin resistance influences HDL metabolism. Progress in our understanding of HDL metabolism and macrophage reverse cholesterol transport will increase the likelihood of developing novel therapies to raise plasma HDL concentrations and promote macrophage RCT and in proving that these new therapeutic interventions prevent or cause regression of atherosclerosis in humans.


Canadian Journal of Cardiology | 2009

2009 Canadian Cardiovascular Society/Canadian guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult – 2009 recommendations

Jacques Genest; Ruth McPherson; Jiri Frohlich; Todd J. Anderson; Norm R.C. Campbell; André C. Carpentier; Patrick Couture; Robert Dufour; George Fodor; Gordon A. Francis; Steven Grover; Milan Gupta; Robert A. Hegele; David C.W. Lau; Lawrence A. Leiter; Gary F. Lewis; Eva Lonn; John Mancini; Dominic S. Ng; Allan D. Sniderman; Ehud Ur; British Columbia

The present article represents the 2009 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia and prevention of cardiovascular disease in the adult.


Journal of Clinical Investigation | 1995

Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans.

Gary F. Lewis; Kristine D. Uffelman; L W Szeto; B Weller; George Steiner

Changes in VLDL triglyceride and VLDL apo B production were determined semiquantitatively in healthy young men by examining the effect of altering plasma insulin and/or FFA levels on the change in the slopes of the specific activity of VLDL [3H]triglyceride glycerol or the 131I-VLDL apo B versus time curves. In one study (n = 8) insulin was infused for 5 h using the euglycemic hyperinsulinemic clamp technique. Plasma FFA levels declined by approximately 80% (0.52 +/- 0.01 to 0.11 +/- 0.02 mmol/liter), VLDL triglyceride production decreased by 66.7 +/- 4.2% (P = 0.0001) and VLDL apo B production decreased by 51.7 +/- 10.6% (P = 0.003). In a second study (n = 8) heparin and Intralipid (Baxter Corp., Toronto, Canada) were infused with insulin to prevent the insulin-mediated fall in plasma FFA levels. Plasma FFA increased approximately twofold (0.43 +/- 0.05 to 0.82 + 0.13 mmol/liter), VLDL triglyceride production decreased to a lesser extent than with insulin alone (P = 0.006) (-31.8 +/- 9.5%, decrease from baseline P = 0.03) and VLDL apo B production did not decrease significantly (-6.3 +/- 13.6%, P = NS). In a third study (n = 8) when heparin and Intralipid were infused without insulin, FFA levels rose approximately twofold (0.53 +/- 0.04 to 0.85 +/- 0.1 mmol/liter), VLDL triglyceride production increased by 180.1 +/- 45.7% (P = 0.008) and VLDL apo B production increased by 94.2 +/- 28.7% (P = 0.05). We confirm our previous observation that acute hyperinsulinemia suppresses VLDL triglyceride and VLDL apo B production in healthy humans. In addition, we have demonstrated that elevation of plasma FFA levels acutely stimulates VLDL production in vivo in healthy young males. Elevating plasma FFA during hyperinsulinemia attenuates but does not completely abolish the suppressive effect of insulin on VLDL production, at least with respect to VLDL triglycerides. Therefore, in normal individuals the acute inhibition of VLDL production by insulin in vivo is only partly due to the suppression of plasma FFA, and may also be due to an FFA-independent process.


Current Opinion in Lipidology | 1997

FATTY ACID REGULATION OF VERY LOW DENSITY LIPOPROTEIN PRODUCTION

Gary F. Lewis

The topic covered in this review is the regulation of hepatic VLDL production by fatty acids, with emphasis on the role of plasma free fatty acids. Hepatic VLDL production is primarily substrate driven, the most important regulatory substrate being fatty acids. Fatty acids may be derived from at least four sources: (1) de-novo lipogenesis, (2) cytoplasmic triglyceride stores, (3) fatty acids derived from lipoproteins taken up directly by the liver, or (4) exogenous fatty acids (plasma free fatty acids). Although the total flux of fatty acids reaching hepatocytes plays an important regulatory role in VLDL synthesis, it is the nutritional and hormonal state of the organism that ultimately determines the rate of VLDL secretion. Nutritional and hormonal factors will determine whether intracellular fatty acids are channelled into oxidative, storage or secretory pathways. Conditions associated with both elevated free fatty acid flux to the liver and elevated de-novo lipogenesis, such as occurs in hyperinsulinemic insulin-resistant states, have hepatocytes primed to channel fatty acids into secretory pathways, with consequent high rates of VLDL secretion. Insulin-resistant states are associated not only with the release of larger quantities of free fatty acids from the increased mass of circulating lipoproteins, particularly in the postprandial state, but also with reduced free fatty acid uptake and esterification by peripheral tissues. Thus a vicious cycle is set up in insulin-resistant states involving free fatty acids and hypertriglyceridemia.


Diabetes | 1993

Effects of Acute Hyperinsulinemia on VLDL Triglyceride and VLDL ApoB Production in Normal Weight and Obese Individuals

Gary F. Lewis; Kristine D. Uffelman; Linda W. Szeto; George Steiner

The effects of short-term hyperinsulinemia on the production of both VLDL triglyceride and VLDL apoB were determined semiquantitatively before and during a 6-h euglycemic hyperinsulinemic clamp (40 mU · m−2 · min−1) in 17 women (8 chronically hyperinsulinemic obese, BMI = 35.7 kg/m2; 9 normal weight, BMI = 22.5 kg/m2). During acute hyperinsulinemia, plasma FFA decreased by ∼ 95% within 1 h in both groups. VLDL triglyceride production decreased 66% in the control subjects (P = 0.0003) and 67% in obese subjects (P = 0.0003). ApoB production decreased 53% in control subjects (P = 0.03) but only 8% in obese (NS). Plasma triglycerides decreased by 40% from baseline in control subjects (P < 0.0001) but only by 10% in obese subjects (P = NS). Despite the similar decrease in triglyceride and apoB production in control subjects, VLDL particle size (triglyceride-to-apoB ratio) decreased with hyperinsulinemia (P = 0.003). In obese subjects, despite a decrease in triglyceride production similar to that in control subjects but no change in apoB production, VLDL size did not change appreciably. Acute hyperinsulinemia in humans: 1) suppresses plasma FFA equally in control and obese subjects at this high dose of insulin; 2) inhibits VLDL triglyceride production equally in control and obese subjects, perhaps secondary to the decrease in FFA; 3) inhibits VLDL apoB production in control but less so in obese subjects, suggesting that obese subjects may be resistant to this effect of insulin; 4) decreases plasma triglyceride and VLDL particle size in control subjects, reflecting either stimulation of LPL activity or a greater relative decrease in triglyceride to apoB production; and 5) does not decrease plasma triglyceride or VLDL size in obese subjects to the same extent as it does in control subjects. Thus, the insulin resistance of obesity affects some but not all aspects of VLDL metabolism.


Trends in Cardiovascular Medicine | 2001

Mechanisms of hepatic very low-density lipoprotein overproduction in insulin resistance.

Khosrow Adeli; Changiz Taghibiglou; Stephen C. Van Iderstine; Gary F. Lewis

An important complication of insulin-resistant states, such as obesity and type 2 diabetes, is an atherogenic dyslipidemia profile characterized by hypertriglyceridemia, low plasma high-density lipoproteins (HDL) cholesterol and a small, dense low-density lipoprotein (LDL) particle profile. The physiological basis of this metabolic dyslipidemia appears to be hepatic overproduction of apoB-containing very low-density lipoprotein (VLDL) particles. This has focused attention on the mechanisms that regulate VLDL secretion in insulin-resistant states. Recent studies in animal models of insulin resistance, particularly the fructose-fed hamster, have enhanced our understanding of these mechanisms, and certain key factors have recently been identified that play important roles in hepatic insulin resistance and dysregulation of the VLDL secretory process. This review focuses on these recent developments as well as on the hypothesis that an interaction between enhanced flux of free fatty acids from peripheral tissues to liver, chronic up-regulation of de novo lipogenesis by hyperinsulinemia and attenuated insulin signaling in the liver may be critical to the VLDL overproduction state observed in insulin resistance. It should be noted that the focus of this review is on molecular mechanisms of the hypertriglyceridemic state associated with insulin resistance and not that observed in association with insulin deficiency (e.g., in streptozotocin-treated animals), which appears to have a different etiology and is related to a catabolic defect rather than secretory overproduction of triglyceride-rich lipoproteins.


Journal of Clinical Investigation | 1999

Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men

Benoît Lamarche; Kristine D. Uffelman; André C. Carpentier; Jeffrey S. Cohn; George Steiner; P. Hugh R. Barrett; Gary F. Lewis

Triglyceride (TG) enrichment of HDL resulting from cholesteryl ester transfer protein-mediated exchange with TG-rich lipoproteins may enhance the lipolytic transformation and subsequent metabolic clearance of HDL particles in hypertriglyceridemic states. The present study investigates the effect of TG enrichment of HDL on the clearance of HDL-associated apo A-I in humans. HDL was isolated from plasma of six normolipidemic men (mean age: 29.7 +/- 2.7 years) in the fasting state and after a five-hour intravenous infusion with a synthetic TG emulsion, Intralipid. Intralipid infusion resulted in a 2.1-fold increase in the TG content of HDL. Each tracer was then whole-labeled with 125I or 131I and injected intravenously into the subject. Apo A-I in TG-enriched HDL was cleared 26% more rapidly than apo A-I in fasting HDL. A strong correlation between the Intralipid-induced increase in the TG content of HDL and the increase in HDL apo A-I fractional catabolic rate reinforced the importance of TG enrichment of HDL in enhancing its metabolic clearance. HDL was separated further into lipoproteins containing apo A-II (LpAI:AII) and those without apo A-II (LpAI). Results revealed that the enhanced clearance of apo A-I from TG-enriched HDL could be largely attributed to differences in the clearance of LpAI but not LpAI:AII. This is, to our knowledge, the first direct demonstration in humans that TG enrichment of HDL enhances the clearance of HDL apo A-I from the circulation. This phenomenon could provide an important mechanism explaining how HDL apo A-I and HDL cholesterol are lowered in hypertriglyceridemic states.


Journal of Biological Chemistry | 2002

Fasting and postprandial overproduction of intestinally-derived lipoproteins in an animal model of insulin resistance: Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and apoB48-containing lipoprotein overproduction

Mehran Haidari; Nathalie Leung; Farhana Mahbub; Kristine D. Uffelman; Rita Kohen-Avramoglu; Gary F. Lewis; Khosrow Adeli

Insulin-resistant states are characterized by hypertriglyceridemia, predominantly because of overproduction of hepatic very low density lipoprotein particles. The additional contribution of intestinal lipoprotein overproduction to the dyslipidemia of insulin-resistant states has not been previously appreciated. Here, we have investigated intestinal lipoprotein production in a fructose-fed hamster model of insulin resistance previously documented to have whole body and hepatic insulin resistance, and hepatic very low density lipoprotein overproduction. Chronic fructose feeding for 3 weeks induced significant oversecretion of apolipoprotein B48 (apoB48)-containing lipoproteins in the fasting state and during steady state fat feeding, based on (a)in vivo Triton WR1339 studies of apoB48 production as well as (b) ex vivo pulse-chase labeling of intestinal enterocytes from fasted and fed hamsters. ApoB48 particle overproduction was accompanied by increased intracellular apoB48 stability, enhanced lipid synthesis, higher abundance of microsomal triglyceride transfer protein mass, and a significant shift toward the secretion of larger chylomicron-like particles. ApoB48 particle overproduction was not observed with short-term fructose feeding orin vitro incubation of enterocytes with fructose. Secretion of intestinal apoB48 and triglyceride was closely linked to intestinal enterocyte de novo lipogenesis, which was up-regulated in fructose-fed hamsters. Inhibition of fatty acid synthesis by cerulenin, a fatty acid synthase inhibitor, resulted in a dose-dependent decrease in intestinal apoB48 secretion. Overall, these findings further suggest that intestinal overproduction of apoB48 lipoproteins should also be considered as a major contributor to the fasting and postprandial dyslipidemia observed in response to chronic fructose feeding and development of an insulin-resistant state.


Clinical Biochemistry | 2003

Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity

Shirya Rashid; Takehiko Watanabe; Taro Sakaue; Gary F. Lewis

Hypertriglyceridemia, low plasma concentrations of high density lipoproteins (HDL) and qualitative changes in low density lipoproteins (LDL) comprise the typical dyslipidemia of insulin resistant states and type 2 diabetes. Although isolated low plasma HDL-cholesterol (HDL-c) and apolipoprotein A-I (apo A-I, the major apolipoprotein component of HDL) can occur in the absence of hypertriglyceridemia or any other features of insulin resistance, the majority of cases in which HDL-c is low are closely linked with other clinical features of insulin resistance and hypertriglyceridemia. We and others have postulated that triglyceride enrichment of HDL particles secondary to enhanced CETP-mediated exchange of triglycerides and cholesteryl ester between HDL and triglyceride-rich lipoproteins, combined with the lipolytic action of hepatic lipase (HL), are driving forces in the reduction of plasma HDL-c and apoA-I plasma concentrations. The present review focuses on these metabolic alterations in insulin resistant states and their important contributions to the reduction of HDL-c and HDL-apoA-I plasma concentrations.


American Journal of Physiology-endocrinology and Metabolism | 1999

Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation

André C. Carpentier; Steven D. Mittelman; Benoǐt Lamarche; Richard N. Bergman; Adria Giacca; Gary F. Lewis

The in vivo effect of elevated free fatty acids (FFA) on beta-cell function in humans remains extremely controversial. We examined, in healthy young men, the acute (90 min) and chronic (48 h) effects of an approximately twofold elevation of plasma FFA vs. control on glucose-stimulated insulin secretion (GSIS). GSIS was studied in response to a graded intravenous glucose infusion (peak plasma glucose, approximately 10 mmol/l, n = 8) and a two-step hyperglycemic clamp (10 and 20 mmol/l, n = 8). In the acute studies, GSIS was significantly higher, insulin sensitivity index (SI) was lower, and disposition index (DI = insulin sensitivity x insulin secretion) was unchanged with elevated FFA vs. control [2-step clamp: DI = 8.9 +/- 1.4 x 10(-3) l2. kg-1. min-2 in control vs. 10.0 +/- 1.9 x 10(-3) l2. kg-1. min-2 with high FFA, P = nonsignificant (NS)]. In the chronic studies, there was no difference in absolute GSIS between control and high FFA studies, but there was a reduction in SI and a loss of the expected compensatory increase in insulin secretion as assessed by the DI (2-step clamp: DI = 10.0 +/- 1.2 x 10(-3) l2. kg-1. min-2 in control vs. 6.1 +/- 0.7 x 10(-3) l2. kg-1. min-2 with high FFA, P = 0.01). In summary, 1) acute and chronic FFA elevation induces insulin resistance; 2) with acute FFA elevation, this insulin resistance is precisely countered by an FFA-induced increase in insulin secretion, such that DI does not change; and 3) chronic FFA elevation disables this beta-cell compensation.The in vivo effect of elevated free fatty acids (FFA) on β-cell function in humans remains extremely controversial. We examined, in healthy young men, the acute (90 min) and chronic (48 h) effects of an approximately twofold elevation of plasma FFA vs. control on glucose-stimulated insulin secretion (GSIS). GSIS was studied in response to a graded intravenous glucose infusion (peak plasma glucose, ∼10 mmol/l, n = 8) and a two-step hyperglycemic clamp (10 and 20 mmol/l, n = 8). In the acute studies, GSIS was significantly higher, insulin sensitivity index (SI) was lower, and disposition index (DI = insulin sensitivity × insulin secretion) was unchanged with elevated FFA vs. control [2-step clamp: DI = 8.9 ± 1.4 × 10-3l2 ⋅ kg-1 ⋅ min-2in control vs. 10.0 ± 1.9 × 10-3l2 ⋅ kg-1 ⋅ min-2with high FFA, P = nonsignificant (NS)]. In the chronic studies, there was no difference in absolute GSIS between control and high FFA studies, but there was a reduction in SI and a loss of the expected compensatory increase in insulin secretion as assessed by the DI (2-step clamp: DI = 10.0 ± 1.2 × 10-3l2 ⋅ kg-1 ⋅ min-2in control vs. 6.1 ± 0.7 × 10-3l2 ⋅ kg-1 ⋅ min-2with high FFA, P = 0.01). In summary, 1) acute and chronic FFA elevation induces insulin resistance; 2) with acute FFA elevation, this insulin resistance is precisely countered by an FFA-induced increase in insulin secretion, such that DI does not change; and 3) chronic FFA elevation disables this β-cell compensation.

Collaboration


Dive into the Gary F. Lewis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce W. Patterson

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge