Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Adria Giacca is active.

Publication


Featured researches published by Adria Giacca.


American Journal of Physiology-endocrinology and Metabolism | 1999

Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation

André C. Carpentier; Steven D. Mittelman; Benoǐt Lamarche; Richard N. Bergman; Adria Giacca; Gary F. Lewis

The in vivo effect of elevated free fatty acids (FFA) on beta-cell function in humans remains extremely controversial. We examined, in healthy young men, the acute (90 min) and chronic (48 h) effects of an approximately twofold elevation of plasma FFA vs. control on glucose-stimulated insulin secretion (GSIS). GSIS was studied in response to a graded intravenous glucose infusion (peak plasma glucose, approximately 10 mmol/l, n = 8) and a two-step hyperglycemic clamp (10 and 20 mmol/l, n = 8). In the acute studies, GSIS was significantly higher, insulin sensitivity index (SI) was lower, and disposition index (DI = insulin sensitivity x insulin secretion) was unchanged with elevated FFA vs. control [2-step clamp: DI = 8.9 +/- 1.4 x 10(-3) l2. kg-1. min-2 in control vs. 10.0 +/- 1.9 x 10(-3) l2. kg-1. min-2 with high FFA, P = nonsignificant (NS)]. In the chronic studies, there was no difference in absolute GSIS between control and high FFA studies, but there was a reduction in SI and a loss of the expected compensatory increase in insulin secretion as assessed by the DI (2-step clamp: DI = 10.0 +/- 1.2 x 10(-3) l2. kg-1. min-2 in control vs. 6.1 +/- 0.7 x 10(-3) l2. kg-1. min-2 with high FFA, P = 0.01). In summary, 1) acute and chronic FFA elevation induces insulin resistance; 2) with acute FFA elevation, this insulin resistance is precisely countered by an FFA-induced increase in insulin secretion, such that DI does not change; and 3) chronic FFA elevation disables this beta-cell compensation.The in vivo effect of elevated free fatty acids (FFA) on β-cell function in humans remains extremely controversial. We examined, in healthy young men, the acute (90 min) and chronic (48 h) effects of an approximately twofold elevation of plasma FFA vs. control on glucose-stimulated insulin secretion (GSIS). GSIS was studied in response to a graded intravenous glucose infusion (peak plasma glucose, ∼10 mmol/l, n = 8) and a two-step hyperglycemic clamp (10 and 20 mmol/l, n = 8). In the acute studies, GSIS was significantly higher, insulin sensitivity index (SI) was lower, and disposition index (DI = insulin sensitivity × insulin secretion) was unchanged with elevated FFA vs. control [2-step clamp: DI = 8.9 ± 1.4 × 10-3l2 ⋅ kg-1 ⋅ min-2in control vs. 10.0 ± 1.9 × 10-3l2 ⋅ kg-1 ⋅ min-2with high FFA, P = nonsignificant (NS)]. In the chronic studies, there was no difference in absolute GSIS between control and high FFA studies, but there was a reduction in SI and a loss of the expected compensatory increase in insulin secretion as assessed by the DI (2-step clamp: DI = 10.0 ± 1.2 × 10-3l2 ⋅ kg-1 ⋅ min-2in control vs. 6.1 ± 0.7 × 10-3l2 ⋅ kg-1 ⋅ min-2with high FFA, P = 0.01). In summary, 1) acute and chronic FFA elevation induces insulin resistance; 2) with acute FFA elevation, this insulin resistance is precisely countered by an FFA-induced increase in insulin secretion, such that DI does not change; and 3) chronic FFA elevation disables this β-cell compensation.


Biochemical and Biophysical Research Communications | 2008

Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK

Danna M. Breen; Toran Sanli; Adria Giacca; Evangelia Tsiani

Although recent studies in vitro and in vivo indicate that the polyphenol resveratrol (RSV) has anti-diabetic properties, the exact mechanisms involved are not known. In the present study, we examined the effects of RSV and the mechanism of regulation of glucose uptake in skeletal muscle cells. In L6 myotubes RSV (100 microM) induced maximum stimulation of glucose (2DG) uptake (201+/-8.90% of control, p<0.001), an effect that was similar to insulin action. RSV-stimulated glucose uptake was abolished by AMPK inhibition. In the presence of the sirtuin inhibitor nicotinamide, RSV-stimulated 2DG uptake and AMPK phosphorylation were abolished. RSV did not stimulate significant translocation of GLUT4 or GLUT1 transporters. However, treatment with indinavir, a GLUT4 specific inhibitor, blocked RSV-stimulated glucose uptake. We propose that RSV elevates glucose uptake in muscle cells through a mechanism that involves sirtuins and AMPK and possibly stimulation of GLUT4 transporter intrinsic activity.


Diabetes | 2007

Free fatty acid-induced reduction in glucose-stimulated insulin secretion: evidence for a role of oxidative stress in vitro and in vivo.

Andrei I. Oprescu; George Bikopoulos; Anthony E. Naassan; Emma M. Allister; Christine Tang; Edward Park; Hiroshi Uchino; Gary F. Lewis; I. George Fantus; Maria Rozakis-Adcock; Michael B. Wheeler; Adria Giacca

OBJECTIVE—An important mechanism in the pathogenesis of type 2 diabetes in obese individuals is elevation of plasma free fatty acids (FFAs), which induce insulin resistance and chronically decrease β-cell function and mass. Our objective was to investigate the role of oxidative stress in FFA-induced decrease in β-cell function. RESEARCH DESIGN AND METHODS—We used an in vivo model of 48-h intravenous oleate infusion in Wistar rats followed by hyperglycemic clamps or islet secretion studies ex vivo and in vitro models of 48-h exposure to oleate in islets and MIN6 cells. RESULTS—Forty-eight–hour infusion of oleate decreased the insulin and C-peptide responses to a hyperglycemic clamp (P < 0.01), an effect prevented by coinfusion of the antioxidants N-acetylcysteine (NAC) and taurine. Similar to the findings in vivo, 48-h infusion of oleate decreased glucose-stimulated insulin secretion ex vivo (P < 0.01) and induced oxidative stress (P < 0.001) in isolated islets, effects prevented by coinfusion of the antioxidants NAC, taurine, or tempol (4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl). Forty-eight–hour infusion of olive oil induced oxidative stress (P < 0.001) and decreased the insulin response of isolated islets similar to oleate (P < 0.01). Islets exposed to oleate or palmitate and MIN6 cells exposed to oleate showed a decreased insulin response to high glucose and increased levels of oxidative stress (both P < 0.001), effects prevented by taurine. Real-time RT-PCR showed increased mRNA levels of antioxidant genes in MIN6 cells after oleate exposure, an effect partially prevented by taurine. CONCLUSIONS—Our data are the first demonstration that oxidative stress plays a role in the decrease in β-cell secretory function induced by prolonged exposure to FFAs in vitro and in vivo.


Diabetes | 2011

Sodium Phenylbutyrate, a Drug With Known Capacity to Reduce Endoplasmic Reticulum Stress, Partially Alleviates Lipid-Induced Insulin Resistance and β-Cell Dysfunction in Humans

Changting Xiao; Adria Giacca; Gary F. Lewis

OBJECTIVE Chronically elevated free fatty acids contribute to insulin resistance and pancreatic β-cell failure. Among numerous potential factors, the involvement of endoplasmic reticulum (ER) stress has been postulated to play a mechanistic role. Here we examined the efficacy of the chemical chaperone, sodium phenylbutyrate (PBA), a drug with known capacity to reduce ER stress in animal models and in vitro, on lipid-induced insulin resistance and β-cell dysfunction in humans. RESEARCH DESIGN AND METHODS Eight overweight or obese nondiabetic men underwent four studies each, in random order, 4 to 6 weeks apart. Two studies were preceded by 2 weeks of oral PBA (7.5 g/day), followed by a 48-h i.v. infusion of intralipid/heparin or saline, and two studies were preceded by placebo treatment, followed by similar infusions. Insulin secretion rates (ISRs) and sensitivity (SI) were assessed after the 48-h infusions by hyperglycemic and hyperinsulinemic-euglycemic clamps, respectively. RESULTS Lipid infusion reduced SI, which was significantly ameliorated by pretreatment with PBA. Absolute ISR was not affected by any treatment; however, PBA partially ameliorated the lipid-induced reduction in the disposition index (DI = ISR × SI), indicating that PBA prevented lipid-induced β-cell dysfunction. CONCLUSIONS These results suggest that PBA may provide benefits in humans by ameliorating the insulin resistance and β-cell dysfunction induced by prolonged elevation of free fatty acids.


Diabetes | 2011

NOD1 Activators Link Innate Immunity to Insulin Resistance

Jonathan D. Schertzer; Akhilesh K. Tamrakar; Joao G. Magalhaes; Sandra Pereira; Philip J. Bilan; Morgan D. Fullerton; Zhi Liu; Gregory R. Steinberg; Adria Giacca; Dana J. Philpott; Amira Klip

OBJECTIVE Insulin resistance associates with chronic inflammation, and participatory elements of the immune system are emerging. We hypothesized that bacterial elements acting on distinct intracellular pattern recognition receptors of the innate immune system, such as bacterial peptidoglycan (PGN) acting on nucleotide oligomerization domain (NOD) proteins, contribute to insulin resistance. RESEARCH DESIGN AND METHODS Metabolic and inflammatory properties were assessed in wild-type (WT) and NOD1/2−/− double knockout mice fed a high-fat diet (HFD) for 16 weeks. Insulin resistance was measured by hyperinsulinemic euglycemic clamps in mice injected with mimetics of meso-diaminopimelic acid–containing PGN or the minimal bioactive PGN motif, which activate NOD1 and NOD2, respectively. Systemic and tissue-specific inflammation was assessed using enzyme-linked immunosorbent assays in NOD ligand–injected mice. Cytokine secretion, glucose uptake, and insulin signaling were assessed in adipocytes and primary hepatocytes exposed to NOD ligands in vitro. RESULTS NOD1/2−/− mice were protected from HFD-induced inflammation, lipid accumulation, and peripheral insulin intolerance. Conversely, direct activation of NOD1 protein caused insulin resistance. NOD1 ligands induced peripheral and hepatic insulin resistance within 6 h in WT, but not NOD1−/−, mice. NOD2 ligands only modestly reduced peripheral glucose disposal. NOD1 ligand elicited minor changes in circulating proinflammatory mediators, yet caused adipose tissue inflammation and insulin resistance of muscle AS160 and liver FOXO1. Ex vivo, NOD1 ligand caused proinflammatory cytokine secretion and impaired insulin-stimulated glucose uptake directly in adipocytes. NOD1 ligand also caused inflammation and insulin resistance directly in primary hepatocytes from WT, but not NOD1−/−, mice. CONCLUSIONS We identify NOD proteins as innate immune components that are involved in diet-induced inflammation and insulin intolerance. Acute activation of NOD proteins by mimetics of bacterial PGNs causes whole-body insulin resistance, bolstering the concept that innate immune responses to distinctive bacterial cues directly lead to insulin resistance. Hence, NOD1 is a plausible, new link between innate immunity and metabolism.


Diabetes | 1997

Fatty Acids Mediate the Acute Extrahepatic Effects of Insulin on Hepatic Glucose Production in Humans

Gary F. Lewis; Mladen Vranic; Patricia Harley; Adria Giacca

We have shown previously in humans that insulin partly suppresses hepatic glucose production (HGP) by an extrahepatic (indirect) mechanism. In the present study, we investigated the role of free fatty acids (FFAs) in mediating the extrahepatic effects of insulin in humans and determined the extent to which insulin can regulate HGP by a non–FFA-mediated effect. Sixteen healthy men received an intravenous tolbutamide infusion for 3 h, and pancreatic insulin secretion was calculated by deconvolution of peripheral C-peptide levels. On a subsequent occasion, equimolar exogenous insulin was infused by peripheral vein. In both studies, glucose was clamped at euglycemia. We have previously validated this method and shown no independent insulin-like activity of tolbutamide. During the clamp, 9 of the 16 subjects received a low dose of heparin and Intralipid to prevent the insulin-induced suppression of FFAs, while 7 subjects received a high dose of heparin and Intralipid to raise FFAs ∼2.5-fold. In both the highand low-dose groups, peripheral insulin was higher and calculated portal insulin lower with peripheral versus portal insulin delivery. In the low-dose group, HGP decreased by 68.3 ±2.1% with portal insulin delivery and 64.7 ± 3.7% with peripheral insulin delivery (NS). In the high-dose group, HGP decreased by 58.0 ± 4.5% with portal insulin and 48.3 ± 5.0% with peripheral insulin (P < 0.05). Four individuals who participated in the high-dose group underwent an additional peripheral insulin study in which the same dose of exogenous insulin was infused as in the high-dose group but in the absence of heparin and Intralipid. During this latter study, FFA levels declined by ∼90% during hyperinsulinemia, and HGP was suppressed by 71.8 ± 5.6%, which was a much greater suppression (P < 0.01) than when FFA levels were raised in these subjects during the equivalent rate insulin infusion. In summary, the previously observed greater suppression of HGP with equimolar peripheral versus portal insulin is eliminated or reversed, depending on plasma FFA levels, if FFAs are prevented from decreasing, suggesting an important role of FFAs in mediating the extrahepatic effects of insulin on HGP. However, the effect of FFA clamping is relatively small with a significant degree of suppression of HGP (by ∼50%), which remains evenwhen FFAs are elevated above basal levels, suggesting that in the physiological range FFAs only partially influence the suppression of HGP in humans. This suggests that other mechanisms, most likely hepatic, dominate the acute insulin-induced suppression of glucose production.


Diabetes | 1996

Hepatic Glucose Production Is Regulated Both by Direct Hepatic and Extrahepatic Effects of Insulin in Humans

Gary F. Lewis; Bernard Zinman; Yolanda Groenewoud; Mladen Vranic; Adria Giacca

The present study examines the effect of the route of insulin delivery on glucose turnover in humans. By using a new noninvasive in vivo method, the acute effect of insulin secreted by the pancreas can be compared with that of insulin delivered by a peripheral vein. Three euglycemic-hyperinsulinemic studies were performed in lean healthy men. In the first study (n = 10), constant portal hyperinsulinemia was produced using a programmed intravenous tolbutamide infusion algorithm, and the insulin secretion rate was mathematically derived by deconvolution from peripheral plasma C-peptide levels. In the second study (n = 10), exogenous insulin was infused by peripheral vein at the same rate as that determined in the first study. In the third study (n = 7), the peripheral insulin levels in the first study were matched by infusing exogenous insulin into a peripheral vein at half that rate. Peripheral insulin levels were higher (P < 0.001) with the full-rate peripheral insulin infusion (266.3 ± 28.1 pmol/l) than with the portal delivery of insulin (171.1 ± 30.4 pmol/l) or the half-rate peripheral insulin infusion (158.6 ± 7.4 pmol/l) (portal versus half-rate peripheral insulin infusion, NS). Calculated hepatic insulin levels were higher (P < 0.001) in the portal insulin study (443.1 ± 52.6 pmol/l) than in the full-rate peripheral insulin study (303.6 ± 30.9 pmol/l) or in the half-rate peripheral insulin study (204.5 ± 9.8 pmol/l). Hepatic glucose production (HGP) was suppressed to a greater extent with the full-rate peripheral insulin infusion (69.3 ± 7.8%, P < 0.001 vs. portal or half-rate peripheral insulin) than portal (50.3 ± 9.8%) or half-rate peripheral insulin infusion (36.8 ± 3.8%). In the portal insulin study, however, suppression was > in the half-rate peripheral insulin study (P < 0.01), in spite of equal peripheral insulin levels. The assumption that tolbutamide, when used in this fashion, has no independent effect on glucose turnover, glucagon, or gluconeogenic precursor and energy substrates for gluconeogenesis was validated in five C-peptide-negative patients with IDDM. We conclude that in nondiabetic humans, 1) peripheral effects of insulin are important in suppressing HGP, as evidenced by the greater suppression of HGP with equivalent rate peripheral versus portal insulin delivery, and 2) because HGP was suppressed to a greater extent with portal verus peripheral insulin delivery at half the rate when peripheral insulin levels were matched, insulin-induced suppression of HGP is also partly mediated by a direct hepatic effect.


Diabetes | 2007

Evidence for a Role of Superoxide Generation in Glucose-Induced β-Cell Dysfunction In Vivo

Christine Tang; Ping Han; Andrei I. Oprescu; Simon Lee; Armen V. Gyulkhandanyan; Gary N.Y. Chan; Michael B. Wheeler; Adria Giacca

OBJECTIVE— Prolonged elevation of glucose can adversely affect β-cell function. In vitro studies have linked glucose-induced β-cell dysfunction to oxidative stress; however, whether oxidative stress plays a role in vivo is unclear. Therefore, our objective was to investigate the role of oxidative stress in an in vivo model of glucose-induced β-cell dysfunction. RESEARCH DESIGN AND METHODS— Wistar rats were infused intravenously with glucose for 48 h to achieve 20 mmol/l hyperglycemia with/without co-infusion of one of the following antioxidants: taurine (2-amino ethanesulfonic acid) (TAU), an aldehyde scavenger; N-acetylcysteine (NAC), a precursor of glutathione; or tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) (TPO), a superoxide dismutase mimetic. This was followed by islet isolation or hyperglycemic clamp. RESULTS— A 48-h glucose infusion decreased glucose-stimulated insulin secretion (GSIS) and elevated reactive oxygen species (ROS), total superoxide, and mitochondrial superoxide in freshly isolated islets. TPO prevented the increase in total and mitochondrial superoxide and the β-cell dysfunction induced by high glucose. However, TAU and NAC, despite completely normalizing H2DCF-DA (dihydro-dichlorofluorescein diacetate)-measured ROS, did not prevent the increase in superoxide and the decrease in β-cell function induced by high glucose. TPO but not TAU also prevented β-cell dysfunction induced by less extreme hyperglycemia (15 mmol/l) for a longer period of time (96 h). To further investigate whether TPO is effective in vivo, a hyperglycemic clamp was performed. Similar to the findings in isolated islets, prolonged glucose elevation (20 mmol/l for 48 h) decreased β-cell function as assessed by the disposition index (insulin secretion adjusted for insulin sensitivity), and co-infusion of TPO with glucose completely restored β-cell function. CONCLUSIONS— These findings implicate superoxide generation in β-cell dysfunction induced by prolonged hyperglycemia.


Schizophrenia Research | 2009

Insulin resistance and secretion in vivo: Effects of different antipsychotics in an animal model

Araba Chintoh; Steve Mann; Loretta Lam; Adria Giacca; Paul J. Fletcher; José N. Nobrega; Gary Remington

Atypical antipsychotics now represent the mainstay of treatment for patients with schizophrenia. Unfortunately, as a class they have also been associated with an increased risk of weight gain and metabolic abnormalities, including type 2 diabetes. We have investigated the diabetogenic effects of a spectrum of antipsychotics, both atypical and typical. Healthy animals were treated acutely with clozapine (10 mg/kg), olanzapine (3.0 mg/kg), risperidone (1 mg/kg), ziprasidone (3 mg/kg) or haloperidol (0.25 mg/kg) and tested using the hyperinsulinemic-euglycemic and hyperglycemic clamp procedures. Clozapine and olanzapine had a rapid and potent effect on insulin sensitivity by lowering the glucose infusion rate and increasing hepatic glucose production. Both clozapine and olanzapine, as well as risperidone, decreased peripheral glucose utilization. Neither ziprasidone nor haloperidol had a significant impact on insulin sensitivity. In the hyperglycemic clamp, clozapine and olanzapine impaired beta cell function as reflected by a decrease in insulin secretion. Results confirm that 1) antipsychotic medications have an immediate impact on metabolic parameters and 2) the various atypical antipsychotics differ in their propensity to acutely induce metabolic side effects. Our data also support the preclinical use of these clamp procedures in screening putative antipsychotics.


Journal of Clinical Investigation | 1992

Importance of peripheral insulin levels for insulin-induced suppression of glucose production in depancreatized dogs.

Adria Giacca; Simon J. Fisher; Z. Q. Shi; R. Gupta; H. L. A. Lickley; Mladen Vranic

It is generally believed that glucose production (GP) cannot be adequately suppressed in insulin-treated diabetes because the portal-peripheral insulin gradient is absent. To determine whether suppression of GP in diabetes depends on portal insulin levels, we performed 3-h glucose and specific activity clamps in moderately hyperglycemic (10 mM) depancreatized dogs, using three protocols: (a) 54 pmol.kg-1 bolus + 5.4 pmol.kg-1.min-1 portal insulin infusion (n = 7; peripheral insulin = 170 +/- 51 pM); (b) an equimolar peripheral infusion (n = 7; peripheral insulin = 294 +/- 28 pM, P < 0.001); and (c) a half-dose peripheral infusion (n = 7), which gave comparable (157 +/- 13 pM) insulinemia to that seen in protocol 1. Glucose production, use (GU) and cycling (GC) were measured using HPLC-purified 6-[3H]- and 2-[3H]glucose. Consistent with the higher peripheral insulinemia, peripheral infusion was more effective than equimolar portal infusion in increasing GU. Unexpectedly, it was also more potent in suppressing GP (73 +/- 7 vs. 55 +/- 7% suppression between 120 and 180 min, P < 0.001). At matched peripheral insulinemia (protocols 2 and 3), not only stimulation of GU, but also suppression of GP was the same (55 +/- 7 vs. 63 +/- 4%). In the diabetic dogs at 10 mM glucose, GC was threefold higher than normal but failed to decrease with insulin infusion by either route. Glycerol, alanine, FFA, and glucagon levels decreased proportionally to peripheral insulinemia. However, the decrease in glucagon was not significantly greater in protocol 2 than in 1 or 3. When we combined all protocols, we found a correlation between the decrements in glycerol and FFAs and the decrease in GP (r = 0.6, P < 0.01). In conclusion, when suprabasal insulin levels in the physiological postprandial range are provided to moderately hyperglycemic depancreatized dogs, suppression of GP appears to be more dependent on peripheral than portal insulin concentrations and may be mainly mediated by limitation of the flow of precursors and energy substrates for gluconeogenesis and by the suppressive effect of insulin on glucagon secretion. These results suggest that a portal-peripheral insulin gradient might not be necessary to effectively suppress postprandial GP in insulin-treated diabetics.

Collaboration


Dive into the Adria Giacca's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Remington

Centre for Addiction and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge