Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gary J. Gorbsky is active.

Publication


Featured researches published by Gary J. Gorbsky.


Current Biology | 2002

Inhibition of Aurora B Kinase Blocks Chromosome Segregation, Overrides the Spindle Checkpoint, and Perturbs Microtubule Dynamics in Mitosis

Marko J. Kallio; Mark L. McCleland; P. Todd Stukenberg; Gary J. Gorbsky

How kinetochores correct improper microtubule attachments and regulate the spindle checkpoint signal is unclear. In budding yeast, kinetochores harboring mutations in the mitotic kinase Ipl1 fail to bind chromosomes in a bipolar fashion. In C. elegans and Drosophila, inhibition of the Ipl1 homolog, Aurora B kinase, induces aberrant anaphase and cytokinesis. To study Aurora B kinase in vertebrates, we microinjected mitotic XTC cells with inhibitory antibody and found several related effects. After injection of the antibody, some chromosomes failed to congress to the metaphase plate, consistent with a conserved role for Aurora B in bipolar attachment of chromosomes. Injected cells exited mitosis with no evidence of anaphase or cytokinesis. Injection of anti-Xaurora B antibody also altered the microtubule network in mitotic cells with an extension of the astral microtubules and a reduction of kinetochore microtubules. Finally, inhibition of Aurora B in cultured cells and in cycling Xenopus egg extracts caused escape from the spindle checkpoint arrest induced by microtubule drugs. Our findings implicate Aurora B as a critical coordinator relating changes in microtubule dynamics in mitosis, chromosome movement in prometaphase and anaphase, signaling of the spindle checkpoint, and cytokinesis.


Science | 2010

Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis

Fangwei Wang; Jun Dai; John R. Daum; Ewa Niedzialkowska; Budhaditya Banerjee; P. Todd Stukenberg; Gary J. Gorbsky; Jonathan M.G. Higgins

Location, Location, Location Cell division is orchestrated by a complex signaling pathway that ensures the correct segregation of newly replicated chromosomes to the two daughter cells. The pathway is controlled in part by restricting the activity of critical regulators to specific subcellular locations. For example, the chromosomal passenger complex (CPC) is recruited to chromosomes during mitosis where it oversees kinetochore activity and cytokinesis (see Perspective by Musacchio). Wang et al. (p. 231, published online 12 August), Kelly et al. (p. 235, published online 12 August), and Yamagishi et al. (p. 239) now show that the phosphorylation of the chromatin protein, histone H3, acts to bring the CPC to chromosomes, thereby activating its aurora B kinase subunit. The Survivin subunit of CPC binds specifically to phosphorylated H3, with the phosphorylation at centromeres being carried out by the mitosis-specific kinase, haspin. Furthermore, Bub1 phosphorylation of histone H2A recruits shugoshin, a centromeric CPC adapter. Thus, these two histone marks in combination define the inner centromere. A critical regulator of cell division is recruited to chromosomes through the specific phosphorylation of a chromatin protein. Aurora B is a component of the chromosomal passenger complex (CPC) required for correct spindle-kinetochore attachments during chromosome segregation and for cytokinesis. The chromatin factors that recruit the CPC to centromeres are unknown, however. Here we show that phosphorylation of histone H3 threonine 3 (H3T3ph) by Haspin is necessary for CPC accumulation at centromeres and that the CPC subunit Survivin binds directly to H3T3ph. A nonbinding Survivin-D70A/D71A mutant does not support centromeric CPC concentration, and both Haspin depletion and Survivin-D70A/D71A mutation diminish centromere localization of the kinesin MCAK and the mitotic checkpoint response to taxol. Survivin-D70A/D71A mutation and microinjection of H3T3ph-specific antibody both compromise centromeric Aurora B functions but do not prevent cytokinesis. Therefore, H3T3ph generated by Haspin positions the CPC at centromeres to regulate selected targets of Aurora B during mitosis.


Nature | 2006

The Reversibility of Mitotic Exit in Vertebrate Cells

Tamara A. Potapova; John R. Daum; Bradley D. Pittman; Joanna Hudson; Tara N. Jones; David L. Satinover; P. Todd Stukenberg; Gary J. Gorbsky

A guiding hypothesis for cell-cycle regulation asserts that regulated proteolysis constrains the directionality of certain cell-cycle transitions. Here we test this hypothesis for mitotic exit, which is regulated by degradation of the cyclin-dependent kinase 1 (Cdk1) activator, cyclin B. Application of chemical Cdk1 inhibitors to cells in mitosis induces cytokinesis and other normal aspects of mitotic exit, including cyclin B degradation. However, chromatid segregation fails, resulting in entrapment of chromatin in the midbody. If cyclin B degradation is blocked with a proteasome inhibitor or by expression of non-degradable cyclin B, Cdk inhibitors will nonetheless induce mitotic exit and cytokinesis. However, if after mitotic exit, the Cdk1 inhibitor is washed free from cells in which cyclin B degradation is blocked, the cells can revert back to M phase. This reversal is characterized by chromosome recondensation, nuclear envelope breakdown, assembly of microtubules into a mitotic spindle, and in most cases, dissolution of the midbody, reopening of the cleavage furrow, and realignment of chromosomes at the metaphase plate. These findings demonstrate that proteasome-dependent degradation of cyclin B provides directionality for the M phase to G1 transition.


Current Biology | 2005

Polo-like kinase 1 creates the tension-sensing 3F3/2 phosphoepitope and modulates the association of spindle-checkpoint proteins at kinetochores

Leena J. Ahonen; Marko J. Kallio; John R. Daum; Margaret A. Bolton; Isaac A. Manke; Michael B. Yaffe; P. Todd Stukenberg; Gary J. Gorbsky

BACKGROUND In mitosis, a mechanochemical system recognizes tension that is generated by bipolar microtubule attachment to sister kinetochores. This is translated into multiple outputs including the stabilization of microtubule attachments, changes in kinetochore protein dynamics, and the silencing of the spindle checkpoint. How kinetochores sense tension and translate this into various signals represent critical unanswered questions. The kinetochores of chromosomes not under tension are specifically phosphorylated at an epitope recognized by the 3F3/2 monoclonal antibody. Determining the kinase that generates the 3F3/2 phosphoepitope at kinetochores should reveal an important component of this system that regulates mitotic progression. RESULTS We demonstrate that Polo-like kinase 1 (Plk1) creates the 3F3/2 phosphoepitope on mitotic kinetochores. In a permeabilized in vitro cell system, the depletion of Xenopus Plk1 from M phase extract leads to the loss of 3F3/2 kinase activity. Purified recombinant Plk1 is sufficient to generate the 3F3/2 phosphoepitope in this system. Using siRNA, we show that the reduction of Plk1 protein levels significantly diminishes 3F3/2 phosphoepitope expression at kinetochores. The consensus phosphorylation sites of Plk1 show strong similarity to the 3F3/2 phosphoepitope sequence determined by phosphopeptide mapping. The inhibition of Plk1 by siRNA alters the normal kinetochore association of Mad2, Cenp-E, Hec1/Ndc80, Spc24, and Cdc20 and induces a spindle-checkpoint-mediated mitotic arrest. CONCLUSIONS Plk1 generates the 3F3/2 phosphoepitope at kinetochores that are not under tension and contributes to the normal kinetochore association of several key proteins important in checkpoint signaling. Mechanical tension regulates Plk1 accumulation at kinetochores and possibly its kinase activity.


Journal of Cell Biology | 2002

Rapid microtubule-independent dynamics of Cdc20 at kinetochores and centrosomes in mammalian cells.

Marko J. Kallio; Victoria A. Beardmore; Jasminder Weinstein; Gary J. Gorbsky

Cdc20 is a substrate adaptor and activator of the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase whose activity is required for anaphase onset and exit from mitosis. A green fluorescent protein derivative, Cdc20–GFP, bound to centrosomes throughout the cell cycle and to kinetochores from late prophase to late telophase. We mapped distinct domains of Cdc20 that are required for association with kinetochores and centrosomes. FRAP measurements revealed extremely rapid dynamics at the kinetochores (t 1/2 = 5.1 s) and spindle poles (t 1/2 = 4.7 s). This rapid turnover is independent of microtubules. Rapid transit of Cdc20 through kinetochores may ensure that spindle checkpoint signaling at unattached/relaxed kinetochores can continuously inhibit APC/CCdc20 targeting of anaphase inhibitors (securins) throughout the cell until all the chromosomes are properly attached to the mitotic spindle.


Current Biology | 2004

The vertebrate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to establish and maintain kinetochore-microtubule attachment.

Mark L. McCleland; Marko J. Kallio; Gregory A. Barrett-Wilt; Cortney A. Kestner; Jeffrey Shabanowitz; Donald F. Hunt; Gary J. Gorbsky; P. Todd Stukenberg

How kinetochores bind to microtubules and move on the mitotic spindle remain unanswered questions. Multiple systems have implicated the Ndc80/Hec1 (Ndc80) kinetochore complex in kinetochore-microtubule interaction and spindle checkpoint activity. In budding yeast, Ndc80 copurifies with three additional interacting proteins: Nuf2, Spc24, and Spc25. Although functional vertebrate homologs of Ndc80 and Nuf2 exist, extensive sequence similarity searches have not uncovered homologs of Spc24 and Spc25. We have purified the xNdc80 complex to homogeneity from Xenopus egg extracts and identified two novel interacting proteins. Although the sequences have greatly diverged, we have concluded that these are the functional homologs of the yeast Spc24 and Spc25 proteins based on limited sequence similarity, common coiled-coil domains, kinetochore localization, similar phenotypes, and copurification with xNdc80 and xNuf2. Using both RNAi and antibody injection experiments, we have extended previous characterization of the complex and found that Spc24 and Spc25 are required not only to establish, but also to maintain kinetochore-microtubule attachments and metaphase alignment. In addition, we show that Spc24 and Spc25 are required for chromosomal movement to the spindle poles in anaphase.


Current Biology | 2009

Ska3 Is Required for Spindle Checkpoint Silencing and the Maintenance of Chromosome Cohesion in Mitosis

John R. Daum; Jonathan D. Wren; Jeremy J. Daniel; Sushama Sivakumar; Jennifer N. McAvoy; Tamara Potapova; Gary J. Gorbsky

The mitotic spindle checkpoint monitors proper bipolar attachment of chromosomes to the mitotic spindle. Previously, depletion of the novel kinetochore complex Ska1/Ska2 was found to induce a metaphase delay. By using bioinformatics, we identified C13orf3, predicted to associate with kinetochores. Recently, three laboratories independently indentified C13orf3 as an additional Ska complex component, and therefore we adopted the name Ska3. We found that cells depleted of Ska3 by RNAi achieve metaphase alignment but fail to silence the spindle checkpoint or enter anaphase. After hours of metaphase arrest, chromatids separate but retain robust kinetochore-microtubule attachments. Ska3-depleted cells accumulate high levels of the checkpoint protein Bub1 at kinetochores. Ska3 protein accumulation at kinetochores in prometaphase is dependent on Sgo1 protein. Sgo1, which accumulates at the centromeres earlier, in prophase, is not dependent on Ska3. Sgo1-depleted cells show a stronger premature chromatid separation phenotype than those depleted of Ska3. We hypothesize that Ska3 functions to coordinate checkpoint signaling from the microtubule binding sites within a kinetochore by laterally linking the individual binding sites. We suggest that this network plays a major role in silencing the spindle checkpoint when chromosomes are aligned at metaphase to allow timely anaphase onset and mitotic exit.


Molecular Biology of the Cell | 2011

Mitotic progression becomes irreversible in prometaphase and collapses when Wee1 and Cdc25 are inhibited

Tamara A. Potapova; Sushama Sivakumar; Jennifer N. Flynn; Rong Li; Gary J. Gorbsky

Activation of Cdk1 is rapid and switch-like due to positive feedback mechanisms. When Cdk1 is fully on, cells are capable of M-to-G1 transition. Inhibition of positive feedback prevents rapid Cdk1 activation and induces a mitotic “collapse” phenotype characterized by the dephosphorylation of mitotic substrates without cyclin B proteolysis.


Nature Reviews Molecular Cell Biology | 2015

Spatiotemporal regulation of the anaphase-promoting complex in mitosis

Sushama Sivakumar; Gary J. Gorbsky

The appropriate timing of events that lead to chromosome segregation during mitosis and cytokinesis is essential to prevent aneuploidy, and defects in these processes can contribute to tumorigenesis. Key mitotic regulators are controlled through ubiquitylation and proteasome-mediated degradation. The APC/C (anaphase-promoting complex; also known as the cyclosome) is an E3 ubiquitin ligase that has a crucial function in the regulation of the mitotic cell cycle, particularly at the onset of anaphase and during mitotic exit. Co-activator proteins, inhibitor proteins, protein kinases and phosphatases interact with the APC/C to temporally and spatially control its activity and thus ensure accurate timing of mitotic events.


Molecular Biology of the Cell | 2009

Fine Tuning the Cell Cycle: Activation of the Cdk1 Inhibitory Phosphorylation Pathway during Mitotic Exit

Tamara A. Potapova; John R. Daum; Kendra S. Byrd; Gary J. Gorbsky

Inactivation of cyclin-dependent kinase (Cdk) 1 promotes exit from mitosis and establishes G1. Proteolysis of cyclin B is the major known mechanism that turns off Cdk1 during mitotic exit. Here, we show that mitotic exit also activates pathways that catalyze inhibitory phosphorylation of Cdk1, a mechanism previously known to repress Cdk1 only during S and G2 phases of the cell cycle. We present evidence that down-regulation of Cdk1 activates Wee1 and Myt1 kinases and inhibits Cdc25 phosphatase during the M to G1 transition. If cyclin B/Cdk1 complex is present in G1, the inhibitory sites on Cdk1 become phosphorylated. Exit from mitosis induced by chemical Cdk inhibition can be reversed if cyclin B is preserved. However, this reversibility decreases with time after mitotic exit despite the continued presence of the cyclin. We show that this G1 block is due to phosphorylation of Cdk1 on inhibitory residues T14 and Y15. Chemical inhibition of Wee1 and Myt1 or expression of Cdk1 phosphorylation site mutants allows reversal to M phase even from late G1. This late Cdk1 reactivation often results in caspase-dependent cell death. Thus, in G1, the Cdk inhibitory phosphorylation pathway is functional and can lock Cdk1 in the inactive state.

Collaboration


Dive into the Gary J. Gorbsky's collaboration.

Top Co-Authors

Avatar

John R. Daum

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Marko J. Kallio

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sushama Sivakumar

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tamara A. Potapova

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeriya Vorozhko

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge